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TIPS FOR EFFECTIVE MACHINE LEARNING 
IN NDT/E
BY JOEL B. HARLEY, SUHAIB ZAFAR, AND CHARLIE TRAN

The proliferation of machine learning (ML) advances will have long-
lasting effects on the nondestructive testing/evaluation (NDT/E) 
community. As these advances impact the field and as new datasets 
are created to support these methods, it is important for researchers 
and practitioners to understand the associated challenges. This 
article provides basic definitions from the ML literature and tips 
for nondestructive researchers and practitioners to choose an ML 
architecture and to understand its relationships with the associated 
data. By the conclusion of this article, the reader will be able to identify 
the type of ML architecture needed for a given problem, be aware of 
how characteristics of the data affect the architecture’s training, and 
understand how to evaluate the ML performance based on properties of 
the dataset.

Introduction
Advances in ML have consistently gen-
erated headlines in the past few years. 
These developments can be attributed 
to sophisticated algorithms, faster 
hardware, and reduced costs for data 
storage. The natural consequence of 
such advancements is the deluge of 
datasets, often known as the age of big 
data. ML algorithms, especially deep 
learning, capitalize on these foundations, 
finding applications in speech recogni-
tion and object detection while opening 
up new possibilities through innovations 
such as ChatGPT (OpenAI 2023). These 
applications vary considerably from one 
another, yet the main task in each case is 
to recognize patterns in datasets.

Pattern recognition is arguably the 
primary driving force behind new sci-
entific and engineering discoveries. For 
instance, Kepler utilized the observa-
tions of Tycho Brahe in astronomy to 
derive the laws governing planetary 
motion, which formed the basis for 
classical mechanics (Bishop 2006). 
However, data was not a driving force 
behind scientific inquiry until recently 
(Brunton et al. 2020), and these trends 
have also impacted NDT/E (Taheri et 
al. 2022), with recent advances such as 

crack detection in concrete using neural 
networks (Saleem and Gutierrez 2021) or 
identifying damage modes in compos-
ite structures via clustering algorithms 
(Xu et al. 2020). Neural networks are 
one of the most widely used algorithms 
today and can be understood as a class 
of mathematical models inspired by the 
structure of the human brain.

However, utilizing neural networks, 
or ML in general, for tasks such as defect 
detection or aiding data interpretation 
is a familiar trend in NDT/E. Martín 
et al. (2007) published a study in 2007 
to interpret ultrasonic oscillograms 
obtained via the pulse-echo method 
with the aid of neural networks. Even 
earlier, in the 1990s, Mann et al. (1992) 
presented the use of neural networks to 
classify ultrasonic signals obtained from 
microfiber cracking in a specimen built 
using a metal matrix composite. These 
examples demonstrate that the NDT/E 
community has long recognized the 
need to augment human judgment with 
pattern recognition algorithms. 

Despite these advances, limita-
tions of ML in NDT/E have mitigated 
its impact on the field when compared 
with other disciplines. A widely acknowl-
edged problem is the limited amounts 

of data available, which is the driving 
force behind the success of ML in many 
applications. Even if the lack of training 
data is not an issue with data-intensive 
applications, such as acoustic emission 
testing (Sikorska and Mba 2008), acquir-
ing data with a high signal-to-noise ratio 
(SNR) is a significant hurdle. Finally, an 
adequate level of understanding and 
experience in ML techniques is required 
to ensure the accurate performance 
of algorithms, which currently needs 
improvement (Vejdannik et al. 2019).

In this article, we address important 
challenges in applying ML to NDT/E by 
providing guidelines for practitioners 
and researchers on building high-quality 
datasets and using appropriate algo-
rithms to ensure high performance 
from trained ML models. The desired 
outcome of this effort is to encourage 
progress in realizing the full poten-
tial of ML in NDT/E, leading to more 
accurate and efficient testing methods 
in the future. Note that the focus of this 
article is on how to assess datasets and 
results. Detailed descriptions of the ML 
algorithms can be found in other papers 
(Taheri and Zafar 2023).

Forms of Machine Learning
ML can be divided into various learning 
paradigms, each with its characteristics 
and uses. Below are descriptions for two 
of these paradigms: supervised learning 
and unsupervised learning. Examples of 
supervised learning and unsupervised 
learning are illustrated in Figure 1. 

Supervised learning: An ML 
paradigm that trains the parameters 
(often numerical weights) of a model 
from input data (features) and known 
output data (labels). Supervised learning 
is the most popular ML paradigm due 
to the ease at which model training can 
be directly translated to the target task. 
The key element of supervised learning 
is the availability of labeled data. Yet in 
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NDT/E, obtaining reliable labels is a spe-
cialized and time-consuming task, which 
is further complicated as manual delin-
eation of discontinuities introduces user 
subjectivity. In turn, mislabeled data can 
be counteractive to the learning process 
of supervised learning ML models 
(Taheri and Zafar 2023; Lever et al. 2017). 

Unsupervised learning: An ML 
paradigm from which an ML model is 
trained from the input data features, but 
without known data labels. Clustering 
is one of the most well-known forms 
of unsupervised learning, wherein 
data is divided into discrete groups. 
Furthermore, dimensionality reduc-
tion and manifold learning methods 
such as principal component analysis 
(PCA) (Lever et al. 2017; Yang et al. 2022) 
and t-distributed stochastic neighbor 
embedding (tSNE) (van der Maaten 
and Hinton 2008) are forms of unsuper-
vised learning. Unsupervised learning is 
useful in NDT/E due to the challenges of 
obtaining labels.

Tips: If dependable labels can be 
obtained for a dataset, a supervised 
learning paradigm is often the simplest 
and most accurate. Assuming no labels 

are known, unsupervised learning is 
powerful but requires domain-specific 
insights from the user. Unsupervised 
learning also generally lacks metrics for 
standardized evaluation. 

Types of Learning Tasks
Each ML paradigm can take on differ-
ent tasks. In this subsection, we sub-
divide supervised learning into its two 
most common tasks (classification and 
regression) and subdivide unsupervised 
learning into its two most common tasks 
(clustering and dimensionality reduc-
tion). These subgroups are illustrated in 
Figure 1. 

Classification: A supervised ML 
model performs classification when it 
determines if the input data belongs to 
one of a discrete set of “classes,” or cat-
egories. For example, different defect 
types (e.g., delamination, crack, no 
defect) may represent different classes 
that we may observe.

Regression: A supervised ML 
machine model performs regression 
when estimating the value of a contin-
uous dependent variable from an input 
independent variable. For example, an 

ML model may process imaging NDT/E 
data to estimate the size of a defect. 

Clustering: The clustering task aims 
to classify data without known informa-
tion by identifying groups, or clusters, 
of data that are similar to each other 
in some manner. Clustering can be 
valuable for identifying unknown rela-
tionships between the data, such as the 
presence of outlier data that could corre-
spond to a discontinuity.

Dimensionality reduction: The aim 
of dimensionality reduction is to reduce 
the data into its essential features. 
Many compression and denoising 
algorithms can be considered forms of 
dimensionality reduction (Yang et al. 
2022). It can separate components (e.g., 
multiple reflections from an ultrasonic 
B-scan) that reconstruct the data when 
added together (Liu et al. 2015). This is 
sometimes referred to as blind source 
separation. 

Tips: It is important to determine 
the appropriate learning task for a given 
problem as it dictates the choice of an 
ML model and the associated challenges. 
Figure 1 describes the most common ML 
models used for each task. 

Characteristics of Machine Learning 
Datasets and Architectures
Most ML architectures learn only from 
the provided data. As a result, ML 
model performance is highly depen-
dent on the dataset quality. The classic 
bias-variance tradeoff is one of the most 
common challenges we must consider 
when building a dataset and choosing an 
architecture.

Bias: One of the most significant 
issues that one must consider when 
creating a dataset is to consider the 
inherent bias that the dataset exhibits 
and how it affects the ML model. That 
is, a dataset will be biased if the training 
data (i.e., the input data and labels that 
are used to initially train the model) 
tends to better represent one scenario 
over another (Mehrabi et al. 2022). Note 
that bias is not inherently bad since 
you may want to focus on a particu-
lar scenario (Miceli et al. 2022), but it 
is important to acknowledge that bias. 
For example, an ML model trained 
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Figure 1. Learning paradigms of machine learning: (a) supervised learning algorithms 
utilize labeled data, which allows algorithms to be trained directly on the downstream task 
(classification and regression); (b) unsupervised algorithms utilize unlabeled data, which 
are primarily used for clustering and dimensionality reduction. Semi-supervised learning 
algorithms incorporate characteristics of both of these paradigms. 
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on simulated data (for which we can 
produce an abundance of labeled data) 
will learn the specific characteristics of 
the simulated data, but it may not also 
represent experimentally measured data. 
If the labels are imbalanced (e.g., there 
are twice as many cracks as delamina-
tions), then the data will be inherently 
more likely to predict the larger class. 
In short, if a characteristic of our data is 
imbalanced (e.g., twice as many mea-
surements originate from aircraft wings 
than bridges), then the predictions will 
be more accurate for those dominant 
characteristics. An underfit ML model 
is created when trained with a biased 
dataset or when the ML model has too 

few parameters (Figure 2). Such a model 
fails to learn specific characteristics from 
the data, leading to poor performance 
(the classic bias-variance tradeoff is illus-
trated in Figure 3). 

Variance: The effects of data imbal-
ances are difficult to gauge in part due 
to the variance in the dataset, another 
factor that must be considered when 
building data. A common question 
posed by non-ML practitioners is often 
“How much data do you need?” The 
answer is usually “it depends” due to 
the inherent variance in the input data. 
For example, if a crack looks identical 
in every single measurement, then the 
dataset has very low variance. In this 
scenario, you may not need a learning 
system because one datum of a crack 
sufficiently describes all other examples 
(although some pattern recognition is 
still necessary). In contrast, if there are 
a million different and unique permuta-
tions of how a crack is represented, then 
the ML model will need at least a million 
examples to correctly classify cracks. In 
reality, there are usually complex rela-
tionships between all data correspond-
ing to cracks, which the ML model can 
learn. A highly variable dataset with too 
few training examples and too many 
parameters to learn can yield an overfit 
ML model (Figure 2). Such a model 
may find uninformative relationships 
in noise, leading to poor performance 
(Figure 3) (Belkin et al. 2019).

Interpretability: One should also 
consider the interpretability of an 
ML architecture. An interpretable ML 
model is one from which humans can 

comprehend how a decision is made 
(Du et al. 2019). In general, there is a 
negative correlation between accuracy 
and model interpretability (Figure 4). 
Gaining interpretability is a difficult 
problem due to the nature of black-
box models, non-linearities, and 
high-dimensional data visualizations. 
Deep neural networks are the prime 
example, being the most accurate 
models but with little to no interpretabil-
ity of the model decision-making. On the 
other hand, linear models (e.g., linear 
regression) are very interpretable, yet 
often less accurate. 

Tips: Misunderstanding bias and 
variance is a significant pitfall for early 
ML practitioners. For example, novice 
deep learning practitioners often default 
toward increasing the number of layers 
in a neural network, thereby increasing 
the model complexity. However, such 
an architecture is not only more compu-
tationally demanding but can in some 
cases be less effective (due to overfitting) 
and less interpretable than a simpler 
architecture. For this reason, deep neural 
networks are unfavorable in situations 
with limited data samples of potentially 
high variance and situations where 
interpretability and accountability are 
important. In such a scenario, users may 
often analyze their problem using con-
ventional ML models, such as support 
vector machines or linear regression 

Figure 2. Model fitting: (a) underfitting; (b) ideal fitting; and (c) overfitting. An underfitting 
model characteristically suffers from poor performance in the training data, being unable to 
learn the relationships within the data. On the other hand, an overfitting model characteristically 
suffers from over-performing on the training data (often viewed as “memorization”) and fails to 
generalize onto new data samples. Thus, a fundamental goal of machine learning algorithms is 
to find an ideal fitting. 
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Figure 3. Bias-variance tradeoff curve. 
Machine learning models strive to balance 
bias and variance. Simple machine learning 
models typically have fewer parameters, 
wherein the high bias and low variance are 
characteristic of model underfitting. On 
the other hand, complex machine learning 
models have a large number of parameters, 
wherein the low bias and high variance are 
characteristic of model overfitting. 
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Figure 4. Model accuracy versus 
interpretability. In machine learning, 
increased accuracy has a natural consequence 
of decreased interpretability. Accurate models 
tend to capture nonlinear and non-smooth 
relationships, while interpretable models tend 
to capture linear and smooth relationships. 
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models, which are generally more inter-
pretable (Figure 4). In essence, applying 
a model architecture should be inspired 
by the data and underlying factors at 
hand, especially for new datasets that 
have not been utilized for ML in the past. 

Metrics for Evaluation
Evaluation metrics are performance 
measures for comparing ML models and 
understanding specific characteristics 
of the data or task. This is in part due to 
the bias and variance within the data. In 
particular, different evaluation metrics 
can be used to attain either a holistic 
performance or a class-specific measure. 
Here we review several of the most 
widely used metrics for evaluating the 
performance of ML models. 

Confusion matrix: The confusion 
matrix visualizes the predicted values 
against the true values. Elements on 
the diagonal of the matrix indicate 
the number of true predictions of the 
model to the true class (true positives 
and true negatives). The off-diagonal 
elements indicate incorrect predictions. 
Reading the confusion matrix tends to 

give further insight as to what types of 
errors are made for a model and allows 
a holistic set of evaluation metrics. We 
provide a typical illustration in Figure 5, 
together with the common name of such 
evaluation metrics. The confusion matrix 
need not be binary but can be con-
ducted in a multi-class fashion. However, 
in the multi-class scenario, summarizing 
the model performance may be cum-
bersome, and traditionally each class is 
evaluated in a one-versus-all manner. 

Accuracy: Accuracy is often the 
most common evaluation metric. The 
accuracy is the proportion of the model 
predictions correct relative to the true 
class. From the perspective of the confu-
sion matrix, this is equivalent to the sum 
of the diagonal divided by the sum of all 
of the values. Accuracy is an easy value 
to understand. However, for imbalanced 
datasets, the accuracy can be uninforma-
tive. For example, a common scenario 
in NDT/E might be that 99% of the data 
is from a normal material and 1% of the 
data is a material with a discontinuity. If 
100% of the data is classified as normal, 
then the accuracy is 99%. This is often 

considered a good result until you recog-
nize that none of the discontinuities are 
identified. 

Recall: Also known as sensitivity or 
the true positive rate (TPR), the recall is 
the proportion of true positive cases that 
are correctly predicted. In binary classifi-
cation, notice that if 99% of the labels do 
not correspond to the class of interest, 
and 100% of the predictions correspond 
to those classes, then the recall will be 0. 
Hence, recall can be suitable when data 
is imbalanced.

Precision: Also known as the positive 
predictive value (PPV), measures the 
proportion of correct positive predictions 
made. Observe, if 99% of the labels do 
not correspond to the class of interest, 
and 100% of the predictions correspond 
to those classes, then the precision will 
be 0. Therefore, precision can be advan-
tageous when data is imbalanced.

F1 score: The F1 score is a metric 
designed to summarize both preci-
sion and recall. It is defined as the 
harmonic mean of precision and recall. 
The harmonic mean, as opposed to the 
arithmetic mean, addresses large devia-
tions between precision and recall. For 
example, if the precision for a class is 
0, and the recall is 1, then the arithme-
tic mean evaluates to 0.5, which may 
naively indicate a random classifier. On 
the other hand, the harmonic mean in 
this scenario equates to 0, revealing the 
classifier is predicting only one class.

Receiver operating characteristic 
curve: The receiver operating charac-
teristic (ROC) curve can be generated 
when the confusion matrix varies as a 
function of a set call criterion (Figure 6). 
This metric originates from traditional 
statistical hypothesis testing in which 
a binary classifier is based upon the 
premise that some statistic is above or 
below a threshold. In a binary classifica-
tion scenario, the ROC curve shows the 
false positive rate versus the true positive 
rate for all threshold values. To summa-
rize the ROC, the area under the ROC 
curve (AUC) is often reported, where 
a perfect classifier attains a value 
of 1 and a random classifier attains an 
AUC of 0.5. The AUC metric is valuable 
as it is invariant of the chosen threshold 
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Figure 5. A confusion matrix is used to evaluate the performance of a classifier, summarizing the 
information between true and predicted classifications. The confusion matrix entails the number 
of true positives, false negatives, false positives, and true negatives. Further classification 
metrics may be extracted (e.g., sensitivity, specificity, accuracy, etc.) to measure different 
aspects of the classifier. 
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and therefore evaluates the overall clas-
sifier rather than some user-chosen 
value. The AUC is also a feasible metric 
for imbalanced data. 

Tips: Careful choice of evaluation 
metrics should be selected based upon 
the bias and variance of the dataset. 
For an unbiased, well-balanced dataset, 
accuracy is often the most characteristic 
of the model performance. In NDT/E, 
we are often concerned with the true 
positive rate, which is also known as 
the probability of (defect) detection or 
the recall of a defect. In other NDT/E 
scenarios, we may want to ensure that 
normal materials are not predicted as 
material defects (e.g., delaminations), 
in which case, the false call rate (also 
known as the false negative rate) or the 
precision score may be more valuable. 
Note the true positive and false positive 
rates are utilized in traditional NDT/E 
probability of detection assessment 
(Cherry and Knott 2022). In the cases 
where we want a balance between the 
recall and precision scores, the F1 score 
becomes a valuable metric.

Conclusion
ML has a significant potential to contrib-
ute to the NDT/E community. However, 
successful usage of ML algorithms 
demands greater insight into their capa-
bilities and intricacies. This sentiment 
is also true for those in the community 
building new datasets for ML practices. 
Understanding the basic capabilities of 

ML paradigms, navigating how bias and 
variance within the data affect the ML 
model, and establishing how perfor-
mance will be measured will help the 
community create datasets that have the 
greatest impact.   
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Figure 6. Receiver operating characteristic 
(ROC) curve. The ROC curve is achieved 
by plotting the false positive rate versus 
the true positive rate at each classification 
threshold. The quality of the ROC curve can 
be summarized by the area under the curve 
(AUC) shaded in gray. 
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MACHINE LEARNING TECHNIQUES FOR 
ACOUSTIC DATA PROCESSING IN ADDITIVE 
MANUFACTURING IN SITU PROCESS 
MONITORING A REVIEW
HOSSEIN TAHERI* AND SUHAIB ZAFAR†

A BS TR AC T

There have been numerous efforts in the metrology, 
manufacturing, and nondestructive evaluation 
communities to investigate various methods for effective 
in situ monitoring of additive manufacturing processes. 
Researchers have investigated the use of a variety of 
techniques and sensors and found that each has its 
own unique capabilities as well as limitations. Among 
all measurement techniques, acoustic-based in situ 
measurements of additive manufacturing processes 
provide remarkable data and advantages for process 
and part quality assessment. Acoustic signals contain 
crucial information about the manufacturing processes 
and fabricated components with a sufficient sampling 
rate. Like any other measurement technique, acoustic-
based methods have specific challenges regarding 
applications and data interpretation. The enormous size 
and complexity of the data structure are significant 
challenges when dealing with acoustic data for in situ 
process monitoring. To address this issue, researchers 
have explored and investigated various data and 
signal processing techniques empowered by artificial 
intelligence and machine learning methods to extract 
practical information from acoustic signals. This paper 
aims to survey recent and innovative machine learning 
techniques and approaches for acoustic data processing 
in additive manufacturing in situ monitoring.  

KEYWORDS: additive manufacturing, in situ monitoring, 
acoustic, machine learning, data processing

Introduction
Various additive manufacturing (AM) methods are utilized for 
manufacturing parts with complex geometries and compli-
cated features that are either unfeasible or highly challenging 
to produce via traditional manufacturing techniques. This 
outstanding capability of AM provides substantial design flex-
ibility and facilitates the production of complex parts with 
marginal added cost compared to subtractive and traditional 
manufacturing methods (Calta et al. 2018). Laser powder bed 
fusion (LPBF), directed energy deposition (DED), and wire arc 
additive manufacturing (WAAM) are among the most popular 
methods of metal AM (Koester et al. 2018). Fused deposi-
tion modeling (FDM), stereolithography (SLA), direct ink 
writing (DIW), and selective laser sintering (SLS) are the most 
common AM techniques for polymers (Baechle-Clayton et al. 
2022; Lee et al. 2020). 

The AM processes not only can cause different mechani-
cal properties for the parts manufactured, but also lead to the 
potential generation of specific types of discontinuities and 
defects in AM parts (Koester et al. 2018, 2019b; Taheri et al. 2017). 
The types of defects in AM parts significantly depend on manu-
facturing process conditions and type of materials. A summary 
of defect types, causes of defect generation, and their potential 
effect on AM parts is presented in Table 1. 

Although inspection and quality assessment for the manu-
factured parts can be done after the production is finished (ex 
situ), there are several significant challenges in traditional ex 
situ inspection methods. One of the major challenges of tra-
ditional inspection of AM parts is due to the capability of AM 
techniques to produce complex-geometry components. This is 
an outstanding capability for AM but makes traditional inspec-
tion of AM parts extremely challenging since many available 
nondestructive testing (NDT) techniques have been developed 
for simpler geometries (Bond et al. 2019). Another primary 
concern in post-production or ex situ inspection of AM parts 
is that AM techniques are used to manufacture many critical, 
high-valued, or exotic parts. Possible rejection of such unique 
parts due to unacceptable quality causes a significant loss of 
time and cost and is not a desirable outcome for industries 
(Koester et al. 2018c; Taheri 2018). Despite the complexity of 
the processes in AM, the layer-by-layer deposition of materials 
allows the measurement and recording of large amounts of 
data on each layer for statistical process monitoring and quality 
assessment (Grasso and Colosimo 2017; Koester et al. 2018b). 
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