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A BS TR AC T

This paper presents a novel data-driven approach to 
localize two types of acoustic emission sources in an 
aluminum plate, namely a Hsu-Nielsen source, which 
simulates a crack-like source, and steel ball impacts 
of varying diameters acting as the impact source. 
While deep neural networks have shown promise in 
previous studies, achieving high accuracy requires a 
large amount of training data, which may not always 
be feasible. To address this challenge, we investigated 
the applicability of transfer learning to address the 
issue of limited training data. Our approach involves 
transferring knowledge learned from numerical 
modeling to the experimental domain to localize nine 
different source locations. In the process, we evaluated 
six deep learning architectures using tenfold cross-
validation and demonstrated the potential of transfer 
learning for efficient acoustic emission source 
localization, even with limited experimental data. This 
study contributes to the growing demand for running 
deep learning models with limited capacity and 
training time and highlights the promise of transfer 
learning methods such as fine-tuning pretrained 
models on large semi-related datasets. 

KEYWORDS: acoustic emission, deep neural network, finite 
element modeling, transfer learning, fiber optics, source 
localization

Introduction
Acoustic emission source localization is crucial in struc-
tural health monitoring (SHM) and proactive maintenance 
of metallic structures. The constraints in deploying acoustic 
emission testing (AE) sensor arrays in real-world structures 
necessitate a shift toward intelligent, automated single-sensor 
approaches. Holford et al. (2001) pioneered the application of 
AE for damage location in steel bridges, establishing its impor-
tance in SHM. Ebrahimkhanlou and Salamone (2017) further 
examined acoustic source localization and its significance in 
determining the origin of acoustic emission waves and assess-
ing damage severity. Cheng et al. (2021) developed an acoustic 
emission source localization method using Lamb wave propa-
gation simulation and artificial neural networks, proving effec-
tive in I-shaped steel girder inspections. Ai et al. (2021) studied 
source localization on large-scale canisters used for nuclear 
fuel storage, addressing the need for optimal AE sensor deploy-
ment. Ciampa and Meo (2010) proposed an approach using 
wavelet analysis and a Newton-based optimization technique 
for acoustic emission source localization and velocity determi-
nation, contributing to the broader understanding of acoustic 
emission wave propagation and source detection.

Significant progress has been achieved in acoustic emission 
source localization through the application of deep learning, 
demonstrating its promise in localizing acoustic emission 
signals (LeCun et al. 2015). Ebrahimkhanlou and Salamone 
(2018) proposed a deep learning approach for localizing 
acoustic emission sources using a single sensor in plate-like 
structures. This was further advanced by Ebrahimkhanlou et 
al. (2019), who introduced a deep learning–based framework 
for localizing and characterizing acoustic emission sources 
in metallic panels using only one sensor. Garrett et al. (2022) 
utilized artificial intelligence for estimating fatigue crack length 
from acoustic emission waves, a significant step forward in 
damage localization and quantification. Despite the challenge 
of false positives, the fusion of artificial intelligence and AE 
holds promising opportunities for enhancing SHM (Verstrynge 
et al. 2021; Hassan et al. 2021).

A key challenge in using supervised learning algorithms 
for acoustic emission source localization is the difficulty in 
accessing labeled acoustic emission signals for existing struc-
tures. Transfer learning is a strategy that assists the super-
vised learning task when available training data is limited 
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(Agarwal et al. 2021). Various studies have demonstrated the 
value of transfer learning in enhancing neural networks for 
acoustic emission source localization and SHM, such as Chen 
et al. (2021), who proposed an acoustic-homologous transfer 
learning approach for rail condition evaluation, and Hasan et 
al. (2019), who utilized transfer learning for reliable bearing 
fault diagnosis under variable speed conditions.

Deep learning and transfer learning methods have shown 
great potential in improving acoustic emission source local-
ization efficiency (Sun 2020; Bengio 2012). Ismail-Fawaz et 
al. (2022) presented a deep learning approach for time series 
classification using hand-crafted convolution filters, further 
enhancing AE capabilities. Ismail Fawaz et al. (2018) explored 
transfer learning for time series classification, while Zhang 
et al. (2017) studied the learnability of fully connected neural 
networks. Weiss et al. (2016) provided a survey of transfer 
learning, and Bengio (2012) emphasized the importance of 
deep learning representations for unsupervised and transfer 
learning. Though significant advancements have been made 
in applying deep learning and transfer learning to acoustic 
emission source localization, continued development and opti-
mization of these methodologies are essential for addressing 
inherent challenges and maximizing their potential in SHM 
(Bengio 2012; Sun 2020).

In this study, our principal innovation lies in the success-
ful implementation of transfer learning through the pretrain-
ing of six deep learning models on a large simulated acoustic 
emission dataset. This enabled the localization of acoustic 
emission sources using a single sensor. We pretrained con-
volutional neural network (CNN), fully convolutional neural 
network (FCNN), Encoder, ResNet, Inception, and Multi-layer 
Perceptron (MLP) models using data from finite element 
method (FEM) simulations of acoustic emission impulses. 
Through transfer learning, we fine-tuned the pretrained 
models on the experimental dataset, improving their perfor-
mance while reducing the number of experiments needed. 
Our results show that the pretrained models generalized well 
to variations in acoustic emission signals and could be applied 
to different model architectures and datasets. Overall, our 
research highlights the potential of deep learning techniques, 
particularly transfer learning, for improving the accuracy and 
efficiency of acoustic emission source localization. These 
findings can significantly benefit the development of reliable 
and cost-effective SHM strategies and are readily applicable to 
other nondestructive evaluation problems.

This paper is organized into four main sections. The first 
section provides an overview of the laboratory experiments 
conducted utilizing pencil lead break (PLB) and impact tests 
at nine distinct positions. In the next section, to aid under-
standing, data visualization is furnished through raw waveform 
plots of both simulated and real-life experimental data derived 
from impact and PLB testing. Additionally, a 2D t-SNE plot is 
provided to better illustrate the clustering structure of signals 
originating from nine distinct locations or classes. The third 
section introduces six distinct deep learning models, including 

our own, which were designed through the iterative fine-tuning 
of layers with unique training parameters. The architectural 
details of both the classifier and the transfer elements of 
our model are thoroughly analyzed in this section. The final 
section presents the results obtained by training these fine-
tuned models using tenfold cross-validation. To give a compre-
hensive view of the models’ performance, the mean loss and 
range of loss for each classifier, as well as for the impact and 
PLB tests, are plotted. The efficacy of each fine-tuned model is 
further evaluated by computing and representing key metrics 
such as precision, recall, and accuracy in a box plot format.

Methods and Experiments
The primary objective of the conducted experiments was to 
scrutinize the effectiveness of the suggested source localization 
techniques, utilizing a singular AE sensor, on an aluminum 
plate. As represented in Figure 1, the experimental setup com-
prised a sensor, constituted by two frail fiber Bragg gratings 
(FBGs), forming a low-finesse Fabry-Perot interferometer (FPI) 
on a coiled single-mode fiber. This arrangement facilitated the 
detection of ultrasound on a solid surface. The setup employed 
a narrow-linewidth diode laser with wavelength tunability, 
designed to direct light toward the FBG-FPI sensor via a circu-
lator developed in Karim et al. (2021).

Before reaching the sensor, the light was passed through a 
three-paddle polarization controller, which facilitated manual 
adjustments to the laser polarization. The light reflected from 
the sensor was then directed to a photodetector (PD) through 
the same circulator. To obtain acoustic emission signals of 
higher quality, the output from the PD was amplified and 
filtered using a 50–500 kHz band-pass filter. Additionally, noise 
removal techniques, such as adaptive filtering, were employed 
to reduce any extraneous signals present during data collec-
tion. It is selected based on its ability to effectively remove 
noise while preserving the signal of interest. The filtered and 
noise-free AE signals were subsequently utilized to train and 
test the deep learning models for source localization.

Acoustic emission is a physical occurrence linked to stress 
waves, initiated by the abrupt liberation of elastic energy during 
the formation of cracks or damages within materials. AE signals 
can be captured and logged by attaching AE sensors to the 
sample surface. The AE monitoring process involves the collec-
tion and analysis of these signals to assess the condition of the 
object under study. The Hsu-Nielsen PLB test, a widely accepted 
artificial method for acoustic emission signal generation (Sause 
2011), was used in this study. It involves breaking pencil leads 
on a surface with an affixed AE sensor. For this study, PLB tests 
were conducted on a 2.54 mm thick aluminum plate measuring 
0.30 × 0.30 m. The plate was partitioned into nine distinct loca-
tions as delineated in Figure 2. Each of the nine representative 
points, denoted by a red dot, underwent the PLB test 10 times, 
using a 2H mechanical pencil with a 0.5 mm diameter lead.

Furthermore, impact-like signals were gathered by 
dropping steel balls (4.7 mm diameter) from a height of 25 mm 
at the same AE sensor location illustrated in Figure 2. The 
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equipment and settings for this experiment mirrored those 
utilized for the PLB tests. The recorded signals were distin-
guished and examined for acoustic emission source identifi-
cation and localization, using these procedures. The experi-
mental setup facilitated the collection of precise and accurate 
data, thereby enabling the evaluation of the proposed method’s 
efficacy in acoustic emission source localization.

Numerical Modeling Assisted Data Augmentation
This study utilizes a 3D computational model for the test 
specimen to enable an enhanced characterization of acoustic 
emission impulses, as inspired by Cuadra et al. (2015). The 
approach hinges on the implementation of pretrained deep 
learning models, which harness data from FEM-simulated 

acoustic emission impulses derived from impact-type and 
PLB tests (Hamstad 2007). The creation of pretraining data via 
these simulated AE signals propels advancements in acoustic 
emission source localization within the specimen. This 
model offers several benefits, such as reducing computational 
demands and enhancing the performance of AE monitoring 
systems in real-world scenarios. The accurate characterization 
of acoustic emission impulses is a vital prerequisite for devel-
oping effective signal-processing algorithms. Our proposal 
presents a robust methodology to pretrain deep learning 
models using data procured from acoustic emission impulse 
simulations. The PLB source was strategically positioned in the 
out-of-plane direction at a predefined location on the plate, 
with the sensor situated an inch from the right and upper 
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Figure 1. Schematic 
of novel fiber-optic 
coil-based acoustic 
emission sensing and 
monitoring system.
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Figure 2. Experimental setup for acoustic emission monitoring: (a) pencil lead break (PLB) and (b) impact tests conducted on an aluminum plate 
(c) that is segregated into nine identified zones. This setup assists the localization of acoustic emission sources.
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edges of the plate, respectively. Utilizing FEM simulations, 
we generated waveforms from nine distinct locations similar 
to the experimental setup shown in Figure 2. Simulating AE 
signals via FEM allows us to generate pretraining data for 
deep learning models, thereby enabling a more accurate and 
efficient localization of acoustic emission sources within the 
specimen. These simulated signals furnish an effective means 
to pretrain deep learning models for AE signal processing algo-
rithms, consequently bolstering the accuracy and effectiveness 
of these algorithms in real-world contexts. For the PLB test, the 
excitation signal,   F  1   (t)  , simulates the response of an aluminum 
plate to mechanical loading and is defined as follows:

  F  1   (t)  =  
{

  
− 2t /  t  1  ,  0 < x <  t  1  

   − cos (π [t −  t  1  ] )  − 1,  t  1   < x <  t  2     
0,  t  2   < x

    

The function was selected due to its ability to elicit a gradual 
increase in the excitation signal. Here,   t  1    and   t  2    are time inter-
vals that define specific stages of the excitation signal.   t  1    sig-
nifies the duration over which the excitation signal increases 
gradually, while   t  2    denotes the time after which the signal 
ceases. This particular function was chosen as it prompts a 
gradual increase in the excitation signal, thus adequately repre-
senting the mechanical loading process. For the impact test,   F  2   
(t)   is represented as:

  F  2   (t)  = C  e   −γt/ t  0    sin (  4π _ 
1 +   t  0   _ t  

  )  

where
C is the initial amplitude of the excitation signal, 
γ is the damping factor, 
  t  0    is the characteristic time of the excitation signal, and 
t is time. 

This function, representing a damped sinusoidal wave, is a 
common signal observed in impact tests and serves to simulate 
the material response to mechanical loading. The shape of the   
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Figure 3. Simulation setup with analytical functions: (a) excitation signal to simulate PLB test; (b) excitation signal to simulate impact test.

T A B L E  1 

Parameters for simulation

Parameters Values

Young’s modulus 206 GPa

Poisson’s ratio 0.3

Density 2710 kg/m3

t0 5 μs

t1 6.5 μs

t2 7.5 μs

Decay rate γ 1.85
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F  1   (t)   and   F  2   (t)   is shown in Figure 3 and specifications of these 
parameters are shown in Table 1.

Figure 4 showcases the signals derived from the impact 
and PLB tests and their corresponding simulation signals. We 
present these waveforms to emphasize the clear correlations 
and dissimilarities between test and simulation data; such 

contrasts highlight the feasibility of employing deep learning 
models in acoustic emission source localization. The duration 
of these signals is distinct for the tests and simulations; the 
test signals span a duration of 250 μs, while the simulation 
signals extend over a period of 100 μs. This discrepancy is a 
consequence of the methods employed to gather sufficient 
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Figure 4. Signals obtained from: (a) impact test; (b) PLB test; (c) impact simulation; and (d) PLB simulation. The raw signal is denoted in blue, while 
the red line signifies the average waveform.
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data from finite element modeling. We deployed a point 
domain network consisting of a 5 × 5 grid of sensing locations 
to gather the simulation data, which increases the complexity 
of the surrounding mesh, substantially slowing the collection 
of the reverberation pattern (reflected signals after 100 μs). 
As such, for practicality and computational efficiency, we 
limited the simulation data collection to the initial 100 μs. The 
simulation was conducted using a workstation equipped with 
a 3.1 GHz multi-core processor and a 4 GB dedicated graphics 
card. On average, each round consumed approximately 
40 min. To gather an adequate volume of source domain 
data (simulation dataset), a data augmentation process was 
executed, resulting in the accumulation of 900 waveforms. 
It is noteworthy that differences in the reflection and trigger 
mechanisms between simulations and experiments, as observ-
able in the figures, stem from variations in the interaction with 
adjacent substrates and boundary conditions, resulting in 
distinct reverberation patterns. Furthermore, while the simula-
tion model logs the accurate time of arrival, the experimental 
process depends on manual trigger thresholding.

t-SNE is a powerful technique for visualizing 
high-dimensional data by mapping each data point to a 
two- or three-dimensional space. While t-SNE was originally 
designed for static data, it has been adapted for use with 
time series data in some cases. Visualizing AE data can be 
challenging due to its complexity and high dimensionality. 
However, t-SNE can be used to map time series data onto 
a low-dimensional space while preserving its underlying 
structure. To apply t-SNE to time series data, we first need to 
transform the sequential nature of the data into a set of fixed-
length feature vectors that can be used as input to t-SNE. This 
can be done using various techniques such as sliding windows 
or feature extraction methods like Fourier transforms or 
wavelet transforms. Once we have transformed the time series 
data into feature vectors, we can compute pairwise similarities 
between them using a Gaussian kernel:

  p  I,j   =   
exp ( 

−   | | x  i   –  x  j  | |    2 
 _ 

2  σ   2 
  ) 
  ________________  

 ∑ k    ∑ l   exp ( −   | | x  k   –  x  l  | |    2  _ 
2  σ   2 

  )   
   

where 
  x  i    and   x  j    are two feature vectors, 
sigma is a parameter that controls the width of the Gaussian 

kernel, and 
  p  I,j    is the probability that   x  i    would pick   x  j    as its neighbor if 

neighbors were picked in proportion to their probability 
density under a Gaussian centered at   x  i   . 

Next, we compute pairwise similarities between points in 
the low-dimensional map using a Student-t distribution: 

  q  i,j   =   
  (1 +   | | y  i   −  y  j  | |    2 )    −1 

  __________________  
 ∑ k    ∑ l     (1 +   | | y  k   −  y  l  | |    2 )    −1   

   

where 
  y  i    and   y  j    are two points in the low-dimensional map, and 
  q  i,j    is the probability that   y  i    would pick   y  j    as its neighbor if 

neighbors were picked uniformly at random from all other 
points. 

Finally, t-SNE minimizes the difference between these two 
distributions using gradient descent on a cost function that 
measures their divergence: 

 KL (P ‖Q )  =  ∑ 
i
    ∑ 

j
    p  i,j   log  

 p  i,j   _  q  i,j      

We’ve employed this t-SNE technique to enhance our 
understanding of the relationship between our simulation 
and experimental datasets. Two-dimensional plots generated 
by this method, as depicted in Figure 5, showing the similar-
ities between AE signals collected from nine distinct zones. 
Figures 5a and 5b demonstrate that the experimental data from 
both the impact and PLB tests exhibit larger variability and less 
distinct clustering, suggesting more complexities and uncer-
tainties in real-world scenarios. On the other hand, Figures 5c 
and 5d illustrate that the simulation data from both tests have 
a clearer clustering effect, indicating the advantages of using 
controlled and predictable simulation data for improving AE 
source localization techniques. Nevertheless, it’s important to 
recall that the simulation data might not encapsulate all the 
complexities and variations inherent in real-world scenarios. 
Therefore, further optimization of our proposed source local-
ization techniques is necessary to incorporate more uncer-
tainty factors, ensuring effectiveness across diverse real-world 
applications.

Deep Transfer Learning for Knowledge Transfer
This study investigates the effective application of transfer 
learning to new data, leveraging the insights obtained from 
pretrained models. A variety of deep learning models, includ-
ing convolutional neural network (CNN), fully connected 
neural network (FCNN), Encoder, Residual Network (ResNet), 
Inception, and Multi-Layer Perceptron (MLP), were assessed 
for their ability to analyze simulated datasets and to extract 
underlying features using a layer-wise fine-tuning strategy. The 
employed methodology entailed signal acquisition from the 
simulated datasets, followed by data preprocessing, feature 
extraction via fine-tuned deep learning models, and finally 
classification based on acoustic emission source location. To 
scrutinize impact and PLB test simulations, six deep learning 
models with distinct architectures and capabilities were inves-
tigated. This innovative strategy leads to a broader compre-
hension of the data, permitting the recognition of overlooked 
patterns and features when using a singular model. Detailed 
summaries of the architectures used for the networks men-
tioned are as follows:
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 Ñ CNN implements two convolutional blocks with 1D 
convolutions, instance normalization, and dropout. Each 
block comprises a Conv1D layer, succeeded by instance 
normalization, dropout, and max pooling. Hierarchical 
features are extracted from the input time series by the 
convolutional blocks. These features are then flattened and 
transmitted to a SoftMax classifier. The CNN model employs 
“categorical_crossentropy” loss and Adam optimizer 
(Simonyan and Zisserman 2014).

 Ñ FCNN resembles the CNN architecture but replaces 
max pooling with global average pooling to minimize 
spatial information loss. The global average pooling layer 
compacts the spatial information into a 1D vector, with these 
compressed features then passed to the SoftMax classifier 
(Zhang et al. 2017).

 Ñ ResNet uses residual blocks to circumvent the vanishing 
gradient issue. Residual blocks add the input directly to the 
stacked convolutional layers, enabling direct gradient flow. It 
uses batch normalization and weight regularization (L2 regu-
larization). Each residual block comprises two Conv1D layers 
followed by batch normalization and activation, with the 

output of the residual blocks average pooled and transmitted 
to the SoftMax classifier size (He et al. 2015).

 Ñ Encoder resembles CNN’s convolutional blocks but employs 
Parametric Rectified Linear Unit (PReLU) activation and 
instance normalization. After the convolutional blocks, an 
attention mechanism is applied. This attention layer assigns 
weights to the feature maps, focusing on pertinent features. 
The attended features are flattened and passed to the 
SoftMax classifier extraction (Vincent et al. 2008).

 ÑMLP substitutes the convolutional layers with dense 
layers for time series classification. The input time series 
is flattened and sent to the dense layers. It uses two dense 
layers with dropout for regularization. The output dense 
layer utilizes SoftMax activation for the classification 
(Delashmit and Manry 2005).

 Ñ Inception utilizes an inception module with parallel branches 
of 1 × 1, 3 × 3, and 5 × 5 convolutions and max pooling. The 
outputs of the parallel branches are concatenated, forming 
the inception module. It employs batch normalization and the 
dropout post inception module. The features are flattened and 
transmitted to the SoftMax classifier (Zhang et al. 2022).
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Figure 5. The two-dimensional t-SNE plot for: (a) impact test dataset; (b) PLB test dataset; (c) impact simulation dataset; and (d) PLB simulation 
dataset.
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Our research employs transfer learning, a technique 
capable of enhancing the performance of deep neural 
networks across various tasks. We illustrate its efficacy by 
applying it to improve the performance of deep neural 
networks in acoustic emission source localization. AE is a 
nondestructive testing method that leverages sound waves to 
identify and analyze material defects, and acoustic emission 
source localization pertains to the determination of the origin 
of the acoustic emission signals. We initialized our process 
by pretraining a deep neural network on a large simulation 
dataset, allowing the network to capture the general features 
of AE signals. Following this, we fine-tuned the deep neural 
network on a smaller experimental dataset, a process that 
facilitated the network’s learning of specific features present 
in the experimental data. Our process involves first trans-
ferring layers from a pretrained model, and subsequently 
freezing their parameters. As new AE data is processed, it 
passes through these frozen layers before progressing through 
the trainable layers, allowing us to localize the acoustic 
emission source. Owing to the intrinsic connection between 
simulation and experimental data, the feature extractor can 
be applied to the latter, incorporating it as a nonadjustable 
layer in our model. We designate the high-level features 
extracted from these layers as “bottleneck” features due to 
their high level of condensation and their position at the 
classifiers’ preceding constriction point (as illustrated in 
Figure 6). The applied deep learning architecture comprises 
one of six classifiers, each consisting of multiple fully con-
nected layers following global pooling. This design enables 
nonlinear mapping of bottleneck features to AE source local-
ization. Additionally, a fusion layer is utilized to amalgamate 
extracted features, and an extra layer is employed to link bot-
tleneck features to location predictions. During fine-tuning, 
the pretrained model’s weights serve as the initial values, 
and the model undergoes further training with available 
target domain data. As a consequence, the fine-tuned model 
can acclimatize to the target domain’s unique characteris-
tics, offering superior performance to a model trained from 
scratch. 

Results and Discussion
In this section, we compare the performance of various deep 
learning models with and without transfer learning applied 
to acoustic emission source localization tasks. We analyze the 
mean loss and loss range over 200 epochs for CNN, FCNN, 
Encoder, ResNet, MLP, and Inception architectures. These 
models were trained on two different datasets, namely the 
impact dataset and the PLB dataset, which both contain 
distinct acoustic emission source localizations. In the first 
scenario, we trained CNN models without transfer learning 
directly on the experimental dataset. Both models exhibit a 
similar pattern over the epochs, initially having high loss values 
and gradually improving to achieve a significant reduction in 
loss. However, the validation loss does not decrease as substan-
tially, which may indicate overfitting. In this case, the models 
have learned the training data too well but struggle to general-
ize on new, unseen data. In contrast, for the second scenario, 
we employed transfer learning, where the CNN models were 
first pretrained on a large, simulated dataset before being fine-
tuned on the experimental dataset. Both models begin with 
lower loss values than those without transfer learning, which 
could be attributed to the initial learning from the simulated 
dataset. Over 200 epochs, these models improve significantly. 
One model achieves a very low validation loss, suggesting 
excellent generalization capability, while the other model 
has a slightly higher validation loss. The performance of the 
other models, such as FCNN, Encoder, MLP, Inception, and 
ResNet, are also compared with and without transfer learning. 
Some models, such as the Encoder and MLP, exhibit signifi-
cant improvements when transfer learning is applied, while 
others show minor or negligible differences. Interestingly, the 
ResNet model demonstrates good performance on both the 
impact and PLB datasets, with and without transfer learning, 
though it experiences more fluctuations in the loss curve 
without transfer learning. Figures 7, 8, and 9 illustrate the mean 
loss and loss range for each model with and without transfer 
learning on the impact and PLB datasets. These visualizations 
provide a clear comparison of the models’ performances, high-
lighting the advantages of transfer learning in various cases. In 
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summary, our findings suggest that transfer learning can sig-
nificantly enhance the performance of deep neural networks 
on acoustic emission source localization tasks, particularly 
when high-quality training data is scarce. It highlights the 
utility of leveraging preexisting knowledge to expedite learning 
and bolster the model’s ability to generalize. However, not 
all models benefited from transfer learning. The Inception 
model’s performance was affected slightly, possibly due to 

the complexities inherent in its architecture. Intriguingly, the 
FCNN model performed better without transfer learning, 
indicating that its architecture might be more suited to direct 
learning from the training data. This observation underscores 
the need to consider the specificities of each model when 
applying transfer learning.

The presented study evaluates the performance on the 
test dataset. Our discussion is supplemented with statistical 
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Figure 7. Comparative 
analysis of mean loss and 
range with and without the 
implementation of transfer 
learning for: (a) CNN model 
applied to the impact test 
dataset; (b) CNN model 
applied to the PLB test 
dataset; (c) FCNN model 
applied to the impact test 
dataset; and (d) FCNN model 
applied to the PLB test 
dataset.
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metrics such as the minimum (the smallest value in the 
dataset), maximum (the largest value), median (the middle 
value when arranged in increasing order), first quartile (Q1: 
the middle value between the minimum and the median), 
and third quartile (Q3: the middle value between the median 
and the maximum). Analyzing the box plot as illustrated 
in Figures 10 and 11, we have added a few things to reduce 
overfitting: 

 Ñ Early stopping: By stopping training if validation loss does not 
improve for 20 epochs, we prevent the model from overfitting 
to the training data. If the validation loss is no longer improving, 
continued training is unlikely to generalize better to new data. 

 Ñ Restore best weights: By restoring weights from the epoch 
with the best validation loss, we “roll back” the model to the 
point before overfitting started to occur. This gives us the 
model that generalizes best to new data.  
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Figure 8. Comparative 
analysis of mean loss and 
range with and without the 
implementation of transfer 
learning for: (a) Encoder 
model applied to the impact 
test dataset; (b) Encoder 
model applied to the PLB 
test dataset; (c) MLP model 
applied to the impact test 
dataset; and (d) MLP model 
applied to the PLB test 
dataset.
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 Ñ Patience: The patience value of 20 epochs means we are 
willing to tolerate a fair number of epochs without improve-
ment before stopping training. This avoids stopping too early 
and allows temporary plateaus in validation loss, but ulti-
mately stops before severe overfitting occurs. 

In the Impact dataset, the CNN and MLP models, with 
and without transfer learning, achieved comparative perfor-
mance in terms of accuracy, precision, and recall, with slight 

enhancements observed in models using transfer learning. 
Conversely, FCNN underperformed, showing negligible 
improvement from transfer learning; unlike CNN and MLP, 
which recorded accuracies above 0.8, FCNN yielded a mere 0.2. 
Transfer learning substantially increased ResNet’s performance 
variance regarding recall, precision, and accuracy. Inception 
showed a similar trend to CNN and MLP, where transfer 
learning resulted in minor enhancements. The Encoder model 
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Figure 9. Comparative 
analysis of mean loss and 
range with and without the 
implementation of transfer 
learning for: (a) Inception 
model applied to the impact 
test dataset; (b) Inception 
model applied to the PLB 
test dataset; (c) ResNet 
model applied to the impact 
test dataset; and (d) ResNet 
model applied to the PLB 
test dataset.
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showed minimal variation in performance; precision was 
slightly higher without transfer learning, while recall remained 
unchanged. Accuracy was slightly improved with transfer 
learning.

As for the PLB dataset, the CNN and MLP with transfer 
learning slightly outperformed their counterparts without 
transfer learning. FCNN underperformed with an accuracy 
of less than 0.1, while transfer learning further deteriorated 
its performance. Again, ResNet showed significant improve-
ment through transfer learning. Unlike the Impact dataset, 
Inception with transfer learning showed slightly worse perfor-
mance compared to without transfer learning. Encoder, similar 
to CNN and MLP, had slightly higher precision, recall, and 
accuracy with transfer learning.

The observations from this study can be explained by the 
fundamental advantage of transfer learning, which can be 
explained by the reusability of the learned features. Models 
without transfer learning, though adept at discriminative 
patterns from training data, face difficulties in generalizing 
to unfamiliar data. This process often results in memorizing 
training data rather than assimilating generalizable patterns, 
thereby leading to elevated validation losses. On the contrary, 
models employing transfer learning derive initial benefits from 
patterns and features harvested from an extensive simulated 
dataset. These models exhibit reduced initial loss values, indi-
cating that the simulated dataset provides a beneficial starting 
framework for interpreting the limited experimental data. 
Furthermore, fine-tuning allowed these models to adapt to the 
specific characteristics of the experimental data, resulting in 
significant improvement over epochs and better generalization 
capabilities. The distinct performance outcomes of different 
models, as illustrated by statistical metrics and visualizations, 
underscore the crucial role of model architecture in harnessing 
the effectiveness of transfer learning.

Conclusions
This paper proposes a novel data-driven approach to accu-
rately localize two types of acoustic emission sources in an 
aluminum plate using six deep learning models: CNN, MLP, 
FCNN, Inception, ResNet, and Encoder. The models incorpo-
rate deep transfer learning techniques to enhance their effec-
tiveness in identifying the source of acoustic emission signals. 
The deep learning models were trained and evaluated using 
simulations of impact and PLB tests with a distributed sensor 
array designed to maximize information acquisition from 
the simulations. The results demonstrate the efficacy of deep 
neural networks with transfer learning in mapping acoustic 
emission waveforms to their sources and uncovering valuable 
insights from the simulations. However, this study’s limitation 
is the inability to identify the exact coordinates of the sources 
of the acoustic emissions. Future research should optimize 
the deep neural networks using larger training datasets and 
explore automated solutions like numerical simulations or 
robotic solutions to address this limitation. Additionally, while 
in this study Hsu-Nielsen tests were used to simulate fatigue 

cracks, further research should conduct more formal tests on 
actual propagating cracks to verify the performance of the 
proposed deep learning approaches under real states of stress. 
These efforts could lead to the development of more robust 
and accurate deep learning models for acoustic emission 
source localization in real-world applications.
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A MESSAGE FROM YOUR 
OUTGOING PRESIDENT
I would like to take this occasion to say, thank you! It has been an honor and 
privilege to serve as our Society’s 81st President from July 2022 to June 
2023. It was a rewarding experience to have the opportunity to work with 
such a dedicated staff and an extremely professional and effective Board of 
Directors (BOD) as we together guided our Society through some very trying 
times. I am so looking forward to taking on the new challenge of serving as 
Chairperson of the Board beginning in July 2023 as the BOD, including the 
five new directors just recently elected (see page 88), will continue to strive 
to make our Society stronger and provide even more opportunities for our 
members.

Over the past year, we have expanded our portfolio of benefits by 
acquiring NDT Classroom and we will be further developing those online 
training courses to fit the needs of our Level I and Level II members (and 
nonmembers, for that matter). We have successfully administered over 
1200+ UT Thickness (UTT) performance verification examinations through 
our highly successful Industry Sector Qualification (ISQ) performance 
demonstration program, rolled out the ISQ UT Shear Wave (UT-SW) exams, 
and are currently rolling out the ISQ UT Phased Array (UT-PA) exams as I 
write this note in early June. Watch for more on the ISQ program to come 
in the very near future. Through ASNT Certification Services LLC, a newly 
formed company that handles all the certification efforts within ASNT, we 
have finally released the new ASNT 9712 program. This will replace the old 
ACCP program and will be fully compliant with the latest ISO 9712 standard 
for the qualification and certification of NDT personnel. Additionally, we have 
introduced the EBC (employer-based certification) Audit Program wherein 
service companies can have their in-house SNT-TC-1A and/or CP-189 
programs audited by ASNT and receive an accreditation of full compliance 
for their program once the audit is completed. There is much more to come 
on this in the very near future that will benefit ASNT members as well.

I was extremely proud to be part of the opening of the new ASNT 
Houston training and testing facility, as well as the newly formed ASNT India 
Pvt. Ltd., part of our international expansion efforts. Both of these facilities will 
provide lower costs to our members while still producing revenue to grow 
the Society.

During my year-long tenure as President, I was fortunate to have the priv-
ilege to represent ASNT at leading NDT conferences around the world. I 
was asked to attend the British Institute of Non-Destructive Testing (BINDT) 
annual conference, where I gave a short speech and follow-up toast to their 
Society. I was honored to host, along with Chairperson of the Board John T. 
Iman and Vice President Dr. John Z. Chen, the US-Japan NDT Symposium, 
which is held every four years in Hawaii. I also represented ASNT at the Asia 
Pacific Conference for NDT in Melbourne, Australia. I was selected and voted 
in as the President of the next Asia Pacific Conference, which will be hosted 
by ASNT in Honolulu in 2026. Lastly, I was an invited lecturer at the 70th anni-
versary ceremonies of the Japanese Society for Non-Destructive Inspection 
in Tokyo, Japan—an event I will remember for a lifetime. I managed to make 
a few local section meetings (not as many as I had planned due to unfore-
seen issues): one being the Charlotte Section’s annual shrimp boil, as well as 
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