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2023

10th ECCOMAS Thematic 
Conference on Smart 
Structures and Materials
3–6 July, Patras, Greece
smart2023.eu

13th ECNDT
3–7 July, Lisbon, Portugal
ecndt2023.org

SAMPE China 2023 
Conference and Exhibition
5–7 July, Beijing, China
sampechina.org

European Congress 
of Radiology
5–9 July, Vienna, Austria
myesr.org/congress

Reliability, Maintenance 
& Managing Risk 
Conference
27–28 July, Minneapolis, 
Minnesota
asqrrd.org/rmmr_conference

17th International 
Symposium on 
Nondestructive 
Characterization 
of Materials 
15–17 August, Dübendorf, 
Switzerland
asnt.org/events

ICENDE 2023
24–26 August, Pune, India
icende.in

8th Railway Forum
6–7 September, 
Berlin, Germany
railwayforum.eu

60th Annual British 
Conference on NDT
12–14 September, 
Northampton, UK
bindt.org

National Pavement 
Preservation Conference
18–21 September, 
Indianapolis, IN
tsp2pavement.pavement 
preservation.org

Aerospace Test & 
Development Show
19–20 September, 
Toulouse, France
aerotestdevelopment 
show.com

CONAENDI & IEV 2023
20–22 September, 
São Paulo, Brazil
conaend.org.br/2023

FCTM-ESOPE
26–27 September, 
Paris, France
fctm-esope.com

Welding Automation 
Expo & Conference
10–12 October, 
Columbus, OH
aws.org

SMRP 31st Annual 
Conference
16–19 October, Orlando, FL
smrp.org

RE:Wind 2023
23–24 October, 
Berlin, Germany
windcongress.com

Probabilistic Safety 
Assessment & 
Management Topical 
Conference
23–25 October, Virtual
conferences.illinois 
.edu/psam

ASNT 2023: The 
Annual Conference
23–26 October, Houston, TX
asnt.org/events

The Quality Show
24–26 October, Rosemont, IL
qualitymag.com

Congress-Wide 
Symposium on 
NDE & SHM
29 October–2 November, 
New Orleans, LA
asme.org

Inspection Expo 
& Conference
8–10 November, Austin, TX
aws.org

4th Asia-Oceania 
Conference on 
Neutron Scattering
18–23 November, 
Dongguan, China
aonsa.org/aocns

World Nuclear Expo
28–30 November, 
Villepinte, France
world-nuclear-exhibition.com

2024

IR/INFO 2024
14–17 January, Orlando, FL
infraspection.com

Reliability and 
Maintainability 
Symposium
22–25 January, Albuquerque, 
New Mexico
rams.org

13th International 
Conference on 
Industrial Computed 
Tomography (iCT2024)
6–9 February, Wels, Austria
ict-conference.com/2024

2024 AMUG Conference
10–14 March, Chicago, IL
amug.com

NASCC: The Steel 
Conference
20–22 March, San 
Antonio, TX
nascc.aisc.org

20th WCNDT
27 May–31 May, 
Incheon, Korea
20thwcndt.com

FABTECH Canada
11–13 June, Toronto, 
ON, Canada
canada.fabtechexpo.com

European Congress 
of Radiology
3–7 July, Vienna, Austria
myesr.org/congress

ASNT 2024: The 
Annual Conference
11–14 November, 
Las Vegas, NV
asnt.org/events

NDTEVENTS | SCANNER

| ASNTONLINE 

Basic Exam Prep Course
10–14 JULY

Time: 8:00 a.m. to 5:00 p.m. (ET)

ASNT Learn Webinar*

12 JULY

Topic: Automated 
Defect Recognition and 
Artificial Intelligence (AI) 
in Digital Radiography
Speaker: Lennart Schulenburg
Time: 3:00 p.m. (ET)

MT Exam Prep Course
17–19 JULY

Time: 8:00 a.m. to 5:00 p.m. (ET)
Deadline to register/
transfer/cancel: 3 July

PT Exam Prep Course
20–21 JULY

Time: 8:00 a.m. to 5:00 p.m. (ET)
Deadline to register/
transfer/cancel: 6 July

VT Exam Prep Course
24–26 JULY

Time: 8:00 a.m. to 5:00 p.m. (ET)
Deadline to register/
transfer/cancel: 10 July

ISQ – UT Thickness 
Prep Course
24–26 JULY

Time: 8:00 a.m. to 5:00 p.m. (ET)

Membership Mondays*

31 JULY

Topic: Researching NDT
Time: 7:00 a.m. and 
4:00 p.m. (ET)

ET Exam Prep Course
31 JULY–2 AUGUST

Time: 8:00 a.m. to 5:00 p.m. (ET)
Deadline to register/
transfer/cancel: 17 July

Dates, times, and topics are 
subject to change. For more 
information, or to register 
for events, go to asnt.org. To 
affiliate with the Virtual Section, 
go to asnt.org > Membership 
> Sections > Virtual Section. 
*Free registration for ASNT members.

Looking for NDT 
Training Course 
listings? 
Course listings have 
moved online and 

can be viewed on asnt.org > Learn > 
Educational Directory. 
To add or update your organization’s 
listing online, email ndtoutreach 
@asnt.org.
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Gathering nondestructive testing (NDT) professionals 
from around the globe to connect, collaborate, 
and learn. ASNT Events are where the NDT World 
comes together!

Don’t miss the opportunity to engage, collaborate, and problem-solve with ASNT’s diverse
community of NDT professionals. Experience dynamic, relevant, and fun professional 
development and learning opportunities. From quality content, to top speakers and a robust 
exhibit hall, ASNT Events deliver the latest in NDT developments, global connections, and more. 
Attend to stay informed about what’s going on in the NDT industry.

DIGITAL IMAGING FOR NDT IS NOW IN THE SPRING

RESEARCH SYMPOSIUM WILL BE HELD IN THE SUMMER

22–26 October  |  Houston, Texas

ASNT… CREATING A SAFER WORLD!®

JOIN US!
Visit asnt.org/events

15–17 August 2023  |  Dübendorf (Zurich), Switzerland

International Symposium on Nondestructive 
Characterization of Materials

John Register
KEYNOTE | 23 OCTOBER 2023 | 4PM
Amputate Fear and Embrace Your New Normal Mindset

Bader Busbait
FEATURED TALK | 24 OCTOBER 2023 | 3:30 PM
Inspection Technologies Evolution Fueled by the
Industrial Revolution 4.0
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BENEFITS 
AND 

CONCERNS
of Using Emerging Artificial 
Intelligence Chatbots With  

Work in NDT
BY JOHN C. ALDRIN

While most of the papers in this special issue explore the use of artificial 
intelligence and machine learning (AI/ML) to support the evaluation of 
nondestructive testing (NDT) data and assist with the classification of NDT 
indications, there are other important ways that emerging AI tools may 
impact how we work in NDT. The article discusses the recent emergence of AI 
chatbots, also referred to as generative artificial intelligence agents or large 
language models (LLMs), and highlights the potential benefits and risks as 
part of work in the NDT field.

Introduction
ChatGPT, launched in late 2022, has been 
getting a lot of attention due to its ability to 
generate human-like text responses to various 
tasks such as answering questions or gen-
erating summaries of content (Molla 2023). 
For many of us who have been working with 
computer algorithms since the 1990s, the idea 
of developing computer-assisted tools, like 

expert systems, has been around for a long 
time. What makes these systems different 
today? Recent breakthroughs in the AI field 
are enabling such tools to be much more 
useful than past generations (Wolfram 2023). 
To start, these models are very large. The 
GPT-3 architecture is from OpenAI, and the 
language model ChatGPT has been reportedly 
trained on around 45 terabytes of text data, 

FEATURE | AI/ML
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which is roughly one quarter the size of the Library 
of Congress. Second, these models also operate 
differently than models of the past. ChatGPT and 
other LLMs are trying to produce a reasonable 
continuation of the text that was initially provided. 
Some people refer to this as a “next word guessing 
engine.” Based on input phrases, these LLMs are 
essentially evaluating the probability of what the 
next word should be. What is interesting is the 
latest generation of models don’t always choose the 
highest-ranked word. Because some randomness is 
involved in the model response, these AI chatbots 
appear to produce much more variety and inter-
esting content. For more details on how ChatGPT 
works, see Wolfram (2023).

Potential Benefits
Let’s ask ChatGPT about how it might help NDT 
professionals with their job. (Note: my prompts are 
in blue and ChatGPT’s responses are in red.)

ChatGPT Q&A Part I
What are the benefits or positives of using emerging 
AI chatbots like ChatGPT with work in nondestruc-
tive testing?

There are several potential benefits to using 
emerging AI chatbots like ChatGPT in nondestruc-
tive testing (NDT) applications. Some of these 
benefits include:

1. Improved speed and efficiency: AI chatbots can 
perform tasks much faster than humans, and 
can work around the clock without breaks. This 
means that NDT tasks can be completed more 
quickly and efficiently, which can lead to cost 
savings and improved productivity.

2. Increased accuracy: AI chatbots can be trained 
to perform NDT tasks with a high degree of 
accuracy, which can reduce the risk of errors and 
improve the reliability of test results.

3. Enhanced safety: NDT tasks can often be 
dangerous or involve exposure to hazardous 
materials. By using AI chatbots to perform these 
tasks, human workers can be kept out of harm’s 
way, reducing the risk of accidents and injuries.

4. Scalability: AI chatbots can be easily scaled up 
or down depending on the needs of the project, 
making it easier to handle large volumes of work 
or adjust to changes in demand.

5. Better data analysis: AI chatbots can process 
large amounts of data quickly and accurately, 
allowing for more detailed analysis of test results 
and better insights into the health of the materials 
being tested.

Overall, the use of emerging AI chatbots like 
ChatGPT has the potential to significantly improve 
NDT processes, making them faster, more accurate, 
and safer for workers.

This reads pretty well. I must admit I’m skeptical 
of some of these points, but I do feel there are clear 
opportunities for AI chatbots to assist humans to be 
more efficient with some laborious tasks.

Jill Ross, the ASNT Director of Publications, 
wrote about the potential impact of ChatGPT on 
editing in the February 2023 issue of Materials 
Evaluation, using ChatGPT: “AI has the potential to 
revolutionize the editing and publishing industry 
by automating various tasks that are traditionally 
done by human editors and publishers” (Ross 
2023). For example, one application is writing sum-
maries and abstracts. AI can take a longer piece 
of writing and summarize it into a shorter version 
in seconds, which can be particularly useful for 
editors and publishers who need to quickly grasp 
the main ideas of a piece of writing. Another one of 
the most promising aspects of the latest AI agents 
is improved language editing for non-English 
speakers (Kim 2023). Such tools, currently free to 
everyone around the world, can produce gener-
ally good-quality, edited paragraphs in seconds. 
Coupling this feature with existing AI-based text 
translation tools, the quality and accessibility of 
published materials is being positively impacted 
throughout the world.

Taking this one step further, Ripi Singh has 
been one of the leading early investigators of the 
potential of collaborative writing with AI agents. In 
2021, Singh and Garg created their own interface 
script to engage with GPT-3 and collaborated with 
it to research human factors in decision-making for 
NDE 4.0. The result was published in the Journal 
of Nondestructive Evaluation (Singh et al. 2021) and 
was the first NDT paper having an AI agent as a 
co-author. The article and a more recent blog post 
(Vrana et al. 2023) provide evidence of the oppor-
tunities for practical human-machine co-working 
at the linguistic and cognitive levels. (Also, see the 
NDE Outlook article in this issue on page 17 [Singh 
and Garg 2023].) 

Beyond just technical writing, AI agents like 
ChatGPT can also be a valuable tool for program-
mers in several practical ways (Timothy 2023). 
ChatGPT is best used as a companion tool, generat-
ing efficient algorithms for specific tasks, answering 
coding questions, and providing help with ideas. 
It can also translate code to another language and 
in certain instances help debug your code. Tyler 
Lesthaeghe at the University of Dayton Research 
Institute has been experimenting with the potential 
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use of AI tools to accelerate NDT research. “I 
presented ChatGPT with a request to develop a 
Python script that would tackle an old challenge in 
automated geometry generation for finite element 
modeling. It generated a script that, with some 
minor tweaks, was functional; but it, unfortunately, 
did not actually solve the fundamental problem. 
However, it did make me aware of a library that I 
was previously unfamiliar. I later tested ChatGPT 
with a more general task—plot the dispersion 
curves for a generic isotropic material. It set up the 
script reasonably well, produced material property 
values for the material I requested, and generated 
functional code producing the correct kind of plot. 
However, the actual calculation, and thus the result-
ing curves themselves, were complete nonsense. 
ChatGPT can, however, be ‘coached.’ So, with a 
knowledge of how to properly solve the problem, 
you can provide it with that explanation, and it will 
ultimately generate the right output. While I think 
there is real potential value in accelerating the more 
trivial parts of code development for NDE applica-
tions, and it may be useful in providing new per-
spectives or potential solution paths for more chal-
lenging kinds of problems, it performs best with a 
human in the loop.”

Risk and Concerns
Let’s now ask ChatGPT about risks and concerns 
with NDT professionals using it.

ChatGPT Q&A Part II 
What are the risks or potential issues using 
emerging AI chatbots with work in nondestructive 
testing?

While there are potential benefits to using 
emerging AI chatbots like ChatGPT in nondestruc-
tive testing (NDT), there are also some risks and 
potential issues that need to be considered. Some of 
these include:

1. Lack of human judgment: AI chatbots may not 
have the same level of judgment or intuition as 
a human worker, which could lead to errors or 
misinterpretations of data.

2. Limited flexibility: AI chatbots are only able to 
perform tasks that they have been specifically 
programmed to do, which could limit their useful-
ness in certain NDT applications.

3. Data bias: AI chatbots may be trained on biased 
or incomplete data, which could lead to inaccu-
rate or unreliable test results.

4. Cybersecurity risks: AI chatbots are vulnerable to 
cybersecurity threats like hacking or data breaches, 
which could compromise sensitive NDT data.

5. Ethical concerns: The use of AI chatbots in NDT 
raises ethical questions about the role of tech-
nology in the workplace, and the potential impact 
on human workers.

It is important to carefully evaluate these risks 
and potential issues when considering the use of 
AI chatbots in NDT applications, and to take steps 
to mitigate these risks through careful planning, 
rigorous testing, and ongoing monitoring and 
maintenance.

What sources did you use to provide these 
responses on the benefits and risk for using AI for 
NDT?

As an AI language model, I have been trained 
on a large corpus of text data that includes a wide 
range of sources on the topic of artificial intelligence 
and nondestructive testing. Some of the sources that 
may have contributed to my response include:

1. Research articles and publications from academic 
journals, conferences, and industry experts on AI 
and NDT.

2. Online articles and reports from reputable 
sources such as industry publications, news 
outlets, and research organizations.

3. White papers and case studies from companies 
and organizations that are involved in developing 
or using AI for NDT applications.

4. Technical documentation and specifications for 
AI technologies and tools that are relevant to 
NDT.

It is important to note that my responses are 
generated based on patterns and associations in the 
data I have been trained on, and may not always 
reflect the most current or accurate information 
on the topic. It is always a good idea to consult 
multiple sources and consult with subject matter 
experts when making decisions about the use of AI 
in NDT.

Humans are required to cite their specific 
sources when writing. It is a common courtesy to 
recognize one’s peers. But more important, citation 
of sources is a critical part of referencing where 
ideas come from and validating the foundations of 
their work. Can you please provide articles you are 
leveraging to respond to my questions on artificial 
intelligence and nondestructive testing above?

As an AI language model, I don’t have access to 
a list of specific articles or sources that have contrib-
uted to my response. This is because my responses 
are generated based on patterns and associations 
in the data I have been trained on, which includes 
a vast amount of text data from a wide range of 
sources.
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However, I can suggest some relevant articles 
and sources related to artificial intelligence and 
nondestructive testing that you may find useful:

1. “Applications of artificial intelligence and 
machine learning in non-destructive testing” by 
A. T. Arulrajah, P. R. W. Nadeeka, and M. A. Ali. 
This is an academic research paper that provides 
an overview of the applications of AI and machine 
learning in NDT.

2. “Non-Destructive Testing and Inspection Market - 
Growth, Trends, COVID-19 Impact, and Forecasts 
(2021 - 2026)” by Mordor Intelligence. This is a 
market research report that provides insights 
into the trends and drivers in the NDT market, 
including the role of AI and machine learning.

3. “Artificial Intelligence in Nondestructive Testing: 
A Review” by M. Elsafi, S. Saeed, and S. M. Zubair. 
This is another academic research paper that 
provides a comprehensive review of the use of AI 
in NDT, including the benefits and challenges.

4. “Nondestructive Testing Using Artificial 
Intelligence: Trends and Opportunities” by S. K. 
Tiwari and R. K. Jain. This is a research article that 
discusses the use of AI in NDT, with a focus on 
the potential benefits and challenges.

I hope you find these resources helpful in your 
research on AI and NDT.

At first, this series of responses appears appro-
priate and honestly impressive. However, there is 
one major issue if you dig deeper; none of these 
suggested references in the last response are 
actually real publications. They are all fabrications. 

Why does this happen? GPT-3 is a language 
model that uses deep neural networks to predict 
the next word in a sequence of text based on the 
context provided by the previous words. Sometimes, 
when the predicted prompt responses are not 
precisely matched, the LLM will still do its best to 
string together the most plausible text response. 
Unfortunately, for some instances where precise 
responses are expected, sometimes they turn out to 
be nonsense.  

Besides fake references, poor logic and unex-
pected responses are an issue for AI agents in 2023. 
The term hallucinations has been given to such 
fabricated responses (Alkaissi and McFarlane 2023). 
This issue becomes more critical when such tools 
are applied to technical and scientific work, like 
NDT, where specific details are of the utmost impor-
tance and where we can’t afford to have such errors 
and fabrications. On NDT.net, there is a thread 
highlighting the bad idea of “ChatGPT3 writing 
your inspection procedure” (Bisle 2023). Clearly, AI 
agents are not ready to be given large complicated 

technical writing tasks and be expected to produce 
error-free content. From my perspective, this is OK. 
NDT technicians, engineers, and researchers should 
be leading and responsible for the quality of written 
procedures, reports, and scientific publications.

The other issue that the aforementioned inter-
change tried to highlight is the lack of any means to 
reference and verify where such content originated. 
I’ve written about the benefits and risks of AI for 
NDT in the past and was curious where ChatGPT 
was getting its material. While it is impressive that 
such AI agents can generate articulate responses 
to such questions, I do see an ethical issue. If 
these language models are being trained using 
material on the order of the content of the Library 
of Congress, shouldn’t they do a better job of pro-
viding the source material for their response? To 
some degree, the current versions of these AI tools 
operate like efficient plagiarism agents, which is the 
antithesis of quality technical and scientific writing 
that depends on collegial citation.  

The Future 
These tools have come a long way in recent years 
and will only get better. While ChatGPT is based on 
GPT-3, OpenAI recently released GPT-4, which has 
received many positive reviews (Metz and Collins 
2023). (While there is a monthly charge to access 
GPT-4 directly, Microsoft Bing Chat does provide 
free limited access to GPT-4 today.) There are also 
a number of other promising AI tools to explore 
today like Google’s Bard, DeepMind Sparrow, and 
Amazon Titan. In terms of knowledge capability, 
GPT-4 has been trained to be more precise and 
OpenAI claims it can score a 1300 (out of 1600) on 
the SAT. So, training on a wider depth of material 
and taking more care with the content selection 
will help. But, to some degree, if these AI agents are 
trained using the broad history of human writing, 
all of the positives and the negatives of our writing 
will be baked into these algorithms. The current 
black-box architecture will make it challenging to 
eliminate false or offensive responses.  

Going forward, the most effective way of using 
such tools will be in a collaborative way. This will 
follow our general experience with the applica-
tion of AI/ML for evaluating NDT data, where 
maintaining a critical role for human inspectors 
ensures NDT data quality and helps compensate 
for instances of poor AI performance. (See Lindgren 
2023 on page 35 in this issue for more discussion 
on this topic.) Workers are already finding ways to 
leverage these tools effectively while doing their 
job. In a recent survey, over 40% of Americans said 
they were using generative AI technology at work 
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(Molla 2023). While new technologies certainly can 
cause disruptions, they may ultimately lead to more 
and better-quality work, much like the impact of 
the personal computer or the internet. University 
instruction is already striving to rethink how to inte-
grate such tools into their curriculum and promote 
best practices (Yang 2023). It is critical to under-
stand how to create appropriate prompts for getting 
the best information, while also understanding the 
risk and quality issues of the output.  

One of the biggest issues going forward 
concerns plagiarism, copyright concerns for human 
content providers, and how this technology could 
be better regulated. Artists and writers are begin-
ning to take action to defend their intellectual 
property from so-called “fair use” (DelSignore 2023). 
Daniel Gervais, a professor at Vanderbilt Law School 
who specializes in intellectual property law states 
that it hinges on the following: “What’s the purpose 
or nature of the use and what’s the impact on the 
market” (DelSignore 2023). Basically, it comes down 
to how you are using the output. Is it for research or 
commercial purposes? If commercial, one needs to 
be extremely careful. These questions and concerns 
are going to greatly impact the future of this tech-
nology, and how widely and rapidly it will be used.

The regulation of AI is expected to evolve 
rapidly and must address the safe application of 
this technology. To date, regulation is being led 
by the EU and China, while the US response has 
been fairly limited in scope. The White House’s 
Blueprint for an AI Bill of Rights highlights the need 
for better decision-making including explanations: 
“Automated systems should provide explanations 
that are technically valid, meaningful, and useful 
to you and to any operators or others who need to 
understand the system, and calibrated to the level of 
risk based on the context” (Klein 2023). But experts 
generally agree we have made almost no progress 
on explaining what is happening inside these LLMs 
(Klein 2023). There is a clear need to be able to 
comprehensively validate AI performance, but this 
appears to be greatly complicated by how complex 
these algorithms have become. Work on Explainable 
AI—a set of tools that help one understand and 
interpret the outputs generated by ML algorithms—
is progressing, but it will take time to get there.  

One consideration for our community: What if 
we created our own NDT Chatbot, let’s say residing 
behind the ASNT login, trained using ASNT-
copyrighted materials, for example back issues of 
Materials Evaluation, and maybe even handbooks? 
Based on what GPT-4 is doing, it is clear such a 
tool could pass a Level III exam. If done right, this 
could be a valuable resource for the community. Of 

course, we’d have to first ensure that the answers 
are consistently correct, just as we have reviewers 
ensure our handbooks and publications are as 
error-free as possible. I feel the technology would 
also need to produce the source(s) for its answer 
to the user, so we have a record to check and 
verify that the answer is correct. If poor responses 
are discovered, we must also have the means of 
correcting it.  

While we can imagine all of the positive uses for 
such AI agents, they can just as easily be deployed 
for nefarious causes today. For example, these tools 
will likely improve the social engineering that is 
being used to fleece people of personal informa-
tion and money through predatory emails, robo-
calls, and social media. It is critical to consider the 
trade-offs of organizing our body of knowledge 
into one easily accessible place. Ripi Singh has 
some very important insight on this going forward: 
“The ‘Vulnerable World Hypothesis’ is a topic that 
deserves our undivided attention at every ASNT 
conference as a single body of professionals com-
mitted to Creating a Safer World!® We can start 
with Generative AI as the first item on the list to be 
addressed, now” (Singh and Garg 2023).

While I don’t have all the answers and definitely 
can’t predict the future, I do want to encourage 
more discussion and feedback on this important 
topic within ASNT. This topic has been brought up 
in the ASNT AI/ML Committee recently and we 
plan to explore possible guidance for the use of gen-
erative AI in NDT going forward. (As well, please 
feel free to share your thoughts with me at aldrin 
@computationaltools.com or get involved with the 
ASNT AI/ML Committee.)  
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VALIDATED AND DEPLOYABLE AI/ML 
FOR NDT DATA DIAGNOSTICS
BY ERIC LINDGREN

While artificial intelligence/machine learning (AI/ML) methods have shown promise for 
the analysis of image and signal data, applications using nondestructive testing (NDT) for 
managing the safety of systems must meet a high level of quantified capability. Engineering 
decisions require technique validation with statistical bounds on performance to enable 
integration into critical analyses, such as life management and risk analysis. The Air Force 
Research Laboratory (AFRL) has pursued several projects to apply a hybrid approach that 
integrates AI/ML methods with heuristic and model-based algorithms to assist inspectors in 
accomplishing complex NDT evaluations. Three such examples are described in this article, 
including a method that was validated through a probability of detection (POD) study and 
deployed by the Department of the Air Force (DAF) in 2004 (Lindgren et al. 2005). Key 
lessons learned include the importance of considering the wide variability present in NDT 
applications upfront and maintaining a critical role for human inspectors to ensure NDT data 
quality and address outlier indications.

Introduction
There is a growing increase in interest and attention 
in AI/ML, which are statistical methods for data 
analysis. The promise of AI/ML is to use statistical 
methods to self-extract attributes in the data, such 
as relationships and/or trends in data that are not 
as quickly and reliably made through typical human 
observation. The DAF has embraced the use of 
these tools for applications where it can accelerate 
decision-making in representative campaigns, as 
shown in Figure 1. The objective defined for one of 
these efforts is summarized as: “The Air Force aims 
to harness and wield the most optimal forms of 
artificial intelligence to accomplish all mission-sets 
of the service with greater speed and accuracy” 
(USAF n.d.).

With the potential to secure more NDT data 
through the transformation to fully digital instru-
ments connected as envisioned by the Internet of 
Things (IoT) and NDE 4.0, there is an increased 
interest to use AI/ML methods as the diagnostic 
tool to determine if a flaw is present in NDT data. 
Justification for the use of AI/ML includes improved 
accuracy, improved reliability, and faster disposi-
tion time by decreasing or eliminating dependence 
on human interpretation and analysis of NDT data. 
The initial focus for the use of AI/ML addresses 
the detection of flaw indications, although there is 
exploration in the use of AI/ML to provide addi-
tional information on characterizing the size and 
location of discontinuities. 

When considering the applicability of AI/ML 
for flaw detection, it is important to recall that 
these technical approaches are based on statistical 
methods, namely regression or classification of data. 
The concept includes the use of multiple statistical 
methods in parallel combined with multiple layers 
of analysis to extract statistical trends in the data 
to enable decisions that are not readily detectable 
through more classical methods. These multidimen-
sional data analysis methods frequently are called 
neural networks. These approaches can either be 
trained using data with known ground truths called 
supervised AL/ML, or be allowed to form the sta-
tistical relationships without training data, called 
unsupervised AI/ML. As these methods rely on 
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Air Force artificial 
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learning campaign 
illustration. 

 J U L Y  2 0 2 3  • M A T E R I A L S  E V A L U A T I O N 35

2307 ME July dup.indd   352307 ME July dup.indd   35 6/19/23   3:41 PM6/19/23   3:41 PM

ASNT grants non-exclusive, non-transferable license of this material to  .
All rights reserved. © ASNT 2024. To report unauthorized use, contact: customersupport@asnt.org



data, critical attributes of the data must be con-
sidered for their use. This includes the amount of 
available data, the accuracy of the data, and noise 
present in the data.

The intent of this article is to discuss some of 
the challenges of using AI/ML exclusively for the 
analysis of NDT data through a representative 
outcome when considering noise and data quantity. 
The approach being used by the researchers at 
the AFRL to enhance manual interpretation of 
NDT data is discussed, and several representative 
examples that integrate attributes of AI/ML into 
diagnostic capability are presented. The intent is to 
highlight the capabilities and opportunities within 
the NDT community to facilitate and accelerate the 
analysis of NDT data.

AI/ML Requirements for Engineering 
Decisions
The detection of flaws using NDT capabilities is 
an engineering decision that requires a statistical 
metric of capability to ensure the safety of systems. 
In aviation, the capability is frequently validated by 
a POD study that follows the guidance provided in 
MIL-HDBK-1823A (US DOD 2009). To make these 
types of assessments possible, it is necessary to 
have metrics on the data that include such factors 
as quantity, quality, and fidelity, which includes 
such relatively simple factors as signal-to-noise 
ratios (SNRs). The outcome of a POD study that 
follows the guidelines of MIL-HDBK-1823A will be 
appropriate statistical metrics for risk calculations, 
ensuring the safety of systems. In the DAF, this is 
part of the Aircraft Structural Integrity Program 
(ASIP) (US DOD 2016) and the Propulsion Systems 
Integrity Program (PSIP) (US DOD 2008).

Similar to POD studies, the same factors of the 
data affect the use of AI/ML. These factors become 

more critical as a function of the risk to a system if 
a flaw is not detected during an inspection cycle. 
Therefore, detailed understanding of the data 
being used is important to enable proper use of the 
AI/ML algorithms when using them to extract infor-
mation from this data. Recent work has illustrated 
the impact of data quantity and SNR on the ability 
of a supervised neural network–based classifier 
(Lindgren 2022). The study used a synthetic dataset 
and introduced Gaussian noise at different percent 
levels while varying the number of data points used 
to train the AI/ML algorithm. The neural network 
used for this study was a multilayered percep-
tron with four layers and 50 layers in each hidden 
layer. The results of this evaluation are shown in 
Figure 2. The plot illustrates the log of the mean 
square error of the neural network as a function of 
SNR for varying the number of data points in each 
dataset. The SNR varies from an infinite value to 
one that is poor of only 10 to 1. The number of data 
points in each dataset varies from 50 up to 14 000. 
The outcomes are presented in standard box plots 
showing the interquartile region (IQR) and whiskers 
based on the 1.5 IQR value, and the outliers are indi-
cated by red indices for each set of numbered data 
points. 

It is clear from this study that the improved 
SNR and larger datasets result in a lower value for 
the mean squared error. This outcome is intui-
tively anticipated as it is expected that more data 
with higher fidelity will result in improved model 
outcomes. However, this example highlights some 
of the challenges of using AI/ML for NDT data 
analysis. Even with the highest level of SNR, using 
smaller datasets for training will produce outliers 
that are considerably deviant for the mean values. 
When considering the impact on safety of systems, 
these outliers are the equivalent of a large, missed 
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flaw that could lead to an increased risk of a cata-
strophic outcome. It is important to recall that it is 
not the smallest flaw that can be detected, but the 
largest flaw that could be missed that impacts the 
safety of a system. This is especially true in aviation 
where single-load path structures are expected to 
have an extraordinarily low risk of failure when risk 
is managed by damage tolerance (US DOD 2016).

This data sensitivity study demonstrates two 
critical issues that need to be considered when 
applying AI/ML algorithms to NDT data. The first 
is the number of data points required to achieve 
improved performance of AI/ML methods. Large 
training sets of actual flaws are hard to generate 
due to the time and cost of preparing such samples. 
A common complaint of POD studies that follow 
the guidance of MIL-HDBK-1823A is the high cost 
to prepare samples with characterized flaws. The 
minimum number of flaws for a versus a-hat (i.e., 
flaw size versus magnitude of the signal response 
from the measurement system) assessments is 40 
and for hit-miss assessments is 60. Large datasets 
of flaw responses in NDT data are difficult to find 
from service since the engineering response to the 
detection of a growing number of flaws is either to 
modify or replace the structural element of concern 
before a large population of flaws is present. An 
option that has been pursued includes the use of 
simulation to generate the required datasets for 
training. However, the challenge is to create simu-
lations that are representative of the flaws found in 
actual structures. This approach would require a 
validation process with a good amount of empiri-
cal data covering the wide range of test conditions 
expected from an engineering perspective.

The second issue is the ability to address outliers 
and nuances in data that can be indicators of flaws. 
The concern is the tendency of statistical methods 
to ignore such features when using large datasets. 
Unless the attributes of the outlier and nuance 
change in data are included in sufficient large quan-
tities in training, the approach would tend to dismiss 
such features in the data, which could result in 
missed flaws. Conversely, if the AI/ML is sensitive 
to outliers, then the concern becomes that a large 
number of false calls could decrease the value of 
implementing the AI/ML algorithm.

Thus, the lessons learned from the analysis of 
representative data includes the need to have the 
right data for training, including multiple flaws that 
are independent from each other. It is extremely 
important to recall that resampling the same data 
is not acceptable unless proper statistical methods 
to address correlated data are included in the 
analysis. Similarly, it is not acceptable to test AI/
ML methods using the same data that was used for 
training. Another aspect is to ensure factors that can 
affect the statistical analysis of data (such as SNR) 
are included in the training datasets. In addition, if 
simulation data is used in training, it must be from 
validated models that capture all the anticipated 
variances found in the NDT data for the inspec-
tion. Lastly, the desired precision and accuracy of 
the diagnostics to be performed by AI/ML must be 
defined to ensure the amount of available data is 
sufficient to meet these objectives. This last consid-
eration is especially true if unsupervised methods 
are being considered.

Challenges for AI/ML in NDT
As indicated by the sensitivity studies in the 
previous section, a significant challenge for the 
use of AI/ML in NDT data is to capture the effect 
of all the factors that can influence the capability 
to detect the flaws of interest. Figure 3 is a repre-
sentation of these factors that the author has used 
extensively to illustrate the additional challenges 
when migrating from a laboratory to an operational 
environment. The three general classes of chal-
lenges can be summarized as equipment variability, 
structural complexity and variability, plus flaw com-
plexity and variability. In addition, these parame-
ters can change as a function of the life of a system, 
which increases the capability validation difficulty 
of the NDT system when integrated into system life 
management.

Equipment variability is the easiest of the three 
sources of variability to address from a research and 
development perspective. The variability in equip-
ment settings can be defined and managed, but the 
unknown that frequently needs to be quantified is 
sensor variability and its impact on the diagnostics 
of flaws. Common NDT procedures address this with 
calibration processes, which alleviate many of these 
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Figure 3. Representative 
increase in challenges 
when migrating from a 
laboratory environment 
(left) to an operational 
environment (right).
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concerns. However, small changes in sensor config-
uration, such as coil tilt within eddy current sensors 
or slight depolarization of well-used ultrasonic trans-
ducers, can influence the flaw detection response. 

Flaw-to-flaw variability can have a much greater 
impact on the NDT response. Previous studies have 
illustrated that the same size flaw can vary in ampli-
tude response from an eddy current inspection by 
over 20% of a full screen height reading (Forsyth et al. 
2015). Similar results can occur in ultrasonic testing 
as well as other NDT techniques. For ultrasound, 
fatigue crack morphology and tortuosity can affect 
a response. Local stress considerations from a fit-up 
of assemblies and changes due to use can vary crack 
closure, which, in turn, affects the magnitude of the 
ultrasonic signal. The variability can be addressed 
in simulation provided all the attributes of the flaw 
that affect detection are included in the simulation 
studies. This includes their interaction, which can 
become a very large study, especially when consider-
ing engineering level validation of the simulation.

While flaw-to-flaw variability can be broadly 
categorized as a function of the type of flaw, struc-
tural variability can become much more challeng-
ing in the analysis of NDT data. This is largely due 
to the extensive range of structures evaluated by 
NDT, which includes power generation, infrastruc-
ture, and transportation, the latter which can be 
segmented into ground, aviation, and space catego-
ries. In addition, other considerations include the 
materials being used, including metals, polymers, 
ceramics, and composites; the manufacturing 
process being used, for example, automation, partial 
automation, or hand assembly; plus, the assembly 
process used to join components, such as welding, 
fastening, and bonding. With all these parameters, it 
becomes very clear why NDT is the ultimate multi-
disciplinary engineering domain! 

A significant challenge is how to evaluate the 
effect all these parameters, both individually and 
through important interactions, have on the NDT 
response. Consider the simple fastened joint between 
two metal surfaces, where up to 22 factors addressing 
equipment, flaws, and structure need to be included 
in a sensitivity study (Lindgren et al. 2007). Structural 
considerations include such things as composition of 
each layer; the possibility of shims and their compo-
sition; assembly quality, such as fastener hole tilt or 
skewed fasteners; and fit-up stresses as a function of 
what type of fastener is used and how it is installed. 
In addition, how these factors change as a function of 
time due to maintenance, repairs, modifications, and 
even use need to be included. 

Using AI/ML techniques for these applications 
can become very daunting when considering all 

the parameters that need to be addressed to make 
diagnostic decisions using automated processes. 
This includes how the statistical processes adjust 
to account for changes that occur as a function of 
time. In addition, how these affect the diagnostic 
capability of the NDT data must be validated to 
enable their use in system risk and life manage-
ment. Therefore, the proper capturing of these 
factors in statistically representative methods 
presents itself as a significant challenge, but also a 
significant research and development opportunity.

DAF Approach to AI/ML for NDT Data
AFRL has been leading the development of algo-
rithms to assist in the diagnostics of NDT data, 
including one of the first implementations for an 
aviation NDT application (Lindgren et al. 2005). 
Attributes that have made this approach successful 
include the use of multiple approaches to develop 
algorithms for the diagnostic capability combined 
with the approach that the algorithms will not 
replace all human interpretation of NDT data. The 
algorithms are used as a capability to facilitate 
and guide the interpretation to make the workload 
on an inspector easier and focused on the critical 
elements of the diagnostic process that do not 
easily lend themselves for automation. AFRL has 
called this approach intelligence augmentation 
(IA), but an alternative term being used in the sci-
entific community is collaborative intelligence (CI) 
(Epstein 2015). This reflects how software tools and 
capabilities can be used to assist in the analysis of 
NDT data, which AFRL has named assisted data 
analysis (ADA).

ADA algorithms combine multiple approaches 
to provide an optimized method to facilitate NDT 
diagnostics. These algorithms can be grouped 
into three general categories. The first uses 
heuristic-based methods that incorporate “rules 
of the road” that closely mimic the procedures by 
which inspectors interpret data. The second is a 
model-based inversion algorithm that uses simu-
lation to represent the measurement response and 
iteratively solve for the unknown flaw or material 
state in the presence of variability. The third uses 
AI/ML methods trained using NDT data and as 
much diagnostics information as possible from 
available datasets. Frequently, the amount of well 
understood NDT data is much smaller than what 
would be required for robust AI/ML analysis, and 
likely requires supplementation from simulated data 
or transfer learning. 

Successful application of ADA has frequently 
included at least two of these approaches into an 
integrated diagnostic algorithm for the specific 

FEATURE | AI/ML

38 M A T E R I A L S  E V A L U A T I O N  • J U L Y  2 0 2 3

2307 ME July dup.indd   382307 ME July dup.indd   38 6/19/23   3:41 PM6/19/23   3:41 PM

ASNT grants non-exclusive, non-transferable license of this material to  .
All rights reserved. © ASNT 2024. To report unauthorized use, contact: customersupport@asnt.org



NDT application being addressed. This includes 
the use of test data to ensure the intent of the 
application is being met and that the available data 
meets the needs of the application before a com-
prehensive validation study is accomplished. The 
output of the ADA diagnostic is not the final dis-
position of an indication. Depending on the appli-
cation, the output enables inspectors to focus their 
attention on portions of the inspection data that 
have features of possible indications by screen-
ing data with no attributes of a possible flaw. 
Alternatively, the output can be used to provide 
guidance on the nature of an indication so the 
proper disposition process can be rapidly iden-
tified and implemented, minimizing the time a 
system is in the inspection stage of a maintenance 
process. The key attribute of this approach is the 
human inspector remains in the loop. The inspec-
tor functions to ensure data quality, data fidelity, 
and can review any ADA outputs to make the final 
determination regarding an indication.

Representative DAF Successes 
The following represents several examples devel-
oped by AFRL and transitioned to the DAF. The 
ADA capabilities are presented as a function of 
increasing complexity from the perspective of 
combining the three technical approaches outlined 
in the previous section. However, this order should 
not be considered a listing of increasing complex-
ity as each application had its unique degrees of 
complexity and used different approaches to tailor 
to the need and to the desired outcome of the 
inspection.

A representative application that emphasizes 
the use of heuristics occurs in the manufactur-
ing of aerospace composite structures, especially 
primary load carrying structures such as wing and 
fuselage skins. These parts require 100% ultrasonic 
inspection to detect delaminations and porosity 
where common rejection criteria are for delamina-
tions greater than 6.35 mm (0.25 in.) in diameter 

or porosity that exceeds 2%. When considering the 
large areas to be inspected at manufacturing (note: 
this is not a requirement once a system is fielded), 
a bottleneck in the production flow can occur with 
the large volume of data to be assessed by inspec-
tors. To minimize this bottleneck, a heuristic-based 
algorithm was developed to closely mimic the steps 
taken by an inspector to review data collected from 
these inspections (Aldrin et al. 2016). 

The ADA algorithm leverages the available 
A-scan and B-scan data that accompanies the 
C-scan data. Multiple steps are taken in each of 
the three data representations to determine if an 
indication has features associated with delami-
nations that exceed the reject criteria. The repre-
sentative result is shown in Figure 4 where C-scan 
features are identified as suspected defects and 
others are identified as benign. Though both may 
appear similar in the C-scan, attributes of the front 
wall, back wall, and volumetric gating can be used 
to distinguish between acceptable and rejectable 
features. The rejectable features are highlighted to 
the trained inspector who makes the final determi-
nation regarding the indication. With this approach, 
inspection processes have been greatly acceler-
ated, though exact metrics are not available for 
publication.

Another representative case study includes the 
use of both simulation and heuristics to identify 
defects and discriminate between types of defects. 
The specific application is for rotating turbine 
engine components evaluated by an automated 
inspection system that can provide highly regis-
tered data. Using a combination of model-based 
assessments and heuristic analysis methods, the 
response from data with varying probe conditions 
can be evaluated and provide guidance on what 
features are from suspected indications and what 
are due to the probe variability (Aldrin et al. 2019b). 
A representative illustration of this approach is the 
experimental response from a subsurface nonme-
tallic inclusion in the presence of probe variation 
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Figure 4. Ultrasonic 
C-scan of a composite 
test article indicating 
regions identified 
by the assisted data 
analysis algorithms as 
potential defects.
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and material noise. Final results from iterative 
comparison and adjustments of the model data, 
being compared in impedance planes, are shown 
in Figure 5 and highlight the ability to evaluate 

the buried nonmetallic inclusion size and depth. 
Additional steps in the development process 
resulted in the ADA algorithms providing guidance 
to the inspectors when features in the data indicate 
when a fatigue crack is emanating from a nonme-
tallic inclusion. The ADA being developed for this 
application is in its final stages of refinement before 
it will be evaluated by a formal validation process.

The third example combines elements of heu-
ristics, simulations, and large dataset analysis to 
realize a successful outcome on a very complex 
inspection. The application addresses the lower 
forward spar cap on C-130 aircraft (Lindgren et 
al. 2005), as shown in Figure 6. The approach 
leverages development at the academic level for 
both the generation and detection of ultrasonic 
creeping waves (Nagy et al. 1994), plus the use of 
algorithms to discern the presence of cracks in 
a less complex, but still challenging, application 
(Aldrin et al. 2001). As described in Lindgren et 
al. (2005), the solution included the use of ana-
lytical methods to fully represent the propagation 
paths within the structure; simulation tools to 
explore various attributes of the inspection data 
as it propagates in the structure; plus, the use 
of advanced processing methods, namely echo 
dynamics and local correlation functions, to dis-
criminate between responses from potential flaws 
to those from other geometric reflectors found 
intermittently in the structure. In addition, over 
2000 representative inspection opportunities 
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Figure 5. Model fit (a) to experimental data (b) for the vertical (top) and horizontal (bottom) representations of eddy 
current scans from a sub-surface nonmetallic particle with differences due to probe and material variability.
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from both harvested and mock-up test articles 
were used to refine the decision-making process 
for the ADA algorithms. 

The inspection process was fully validated by a 
comprehensive POD study before being deployed. 
The inspections were accomplished by contractor 
field teams that would collect the data and ensure 
it had sufficient quality to be evaluated by the ADA. 
Suspected indications identified by the ADA were 
sent to an NDT engineer to make a final determina-
tion if the indication was confirmed and needed to 
be sent to engineering for disposition.

The next generation of ADA will expand the 
capability of algorithms to facilitate the identification 
of defects to the capability to characterize the defects 
in ways that are not available today. While inspec-
tors can use methods to approximate defect size, 
attributes like fatigue crack depth are especially chal-
lenging. However, using a combination of heuristics, 
simulations, and data-driven analytical methods, the 
use of ADA to determine the depth of a fatigue crack 
from a bolt-hole eddy current inspection was shown 
to have an average accuracy of 8.5% for fastener holes 
with minimal variability (Aldrin et al. 2019a). The next 
steps in the development process are to use this inte-
grated approach to address fastener hole variability, 
such as skew and out-of-round attributes, to provide 
a crack depth estimated with a statistical bounds on 
accuracy, to enable rapid disposition of these defects 
in aerospace structures.

Summary 
There is a continued potential for AI/ML methods 
to enhance data analysis and diagnostics for 
NDT data. However, there needs to be a realis-
tic approach that includes evaluation of the data 
quantity, quality, and fidelity. This ensures it has 
the desired attributes that enable the AI/ML tech-
niques to provide outcomes with sufficient statis-
tical metrics for the results to be used in engineer-
ing decisions. In addition, these outcomes require 
rigorous validation of the diagnostic capability 
before they can be trusted to help ensure the integ-
rity, or safety, of systems. 

A representative example illustrated the chal-
lenges in using AI/ML techniques for smaller and 
noisy datasets, highlighting how this can lead 
to outliers that would imply potentially missed 
defects if this approach was used for NDT datasets. 
Additional challenges exist in data variability from 
equipment, defects, and structure that impact 
the amount of quality data required for AI/ML 
approaches. While data for defects can be aug-
mented by simulations, these must contain all the 

anticipated variability and complexity of the NDT 
evaluation technique to represent nuances and 
outliers that are challenging for AI/ML, but critical 
for high-accuracy flaw detection.

The challenges of AI/ML when used for NDT 
data has led AFRL to pursue a hybrid approach that 
integrates AI/ML with heuristic- and model-based 
diagnostic algorithms to facilitate and reduce the 
workload of inspectors while not taking them com-
pletely out of the loop. Representative examples 
for several DAF-related applications have demon-
strated the power of combining at least two of 
these methods to enable complex inspections and 
diagnostics of NDT data. The ADA algorithms are 
combined with human analysis to maximize the 
value of the algorithms by reducing the workload 
of inspectors so they can focus on the critical data 
that could be indications of defects being present. 
Future work includes plans to expand the capabili-
ties of ADA algorithms to characterize defects with 
statistical metrics of accuracy. Initial development 
efforts have shown the potential of this capability, 
which would decrease the disposition time of indi-
cations and increase availability of the system to the 
end user.  
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TIPS FOR EFFECTIVE MACHINE LEARNING 
IN NDT/E
BY JOEL B. HARLEY, SUHAIB ZAFAR, AND CHARLIE TRAN

The proliferation of machine learning (ML) advances will have long-
lasting effects on the nondestructive testing/evaluation (NDT/E) 
community. As these advances impact the field and as new datasets 
are created to support these methods, it is important for researchers 
and practitioners to understand the associated challenges. This 
article provides basic definitions from the ML literature and tips 
for nondestructive researchers and practitioners to choose an ML 
architecture and to understand its relationships with the associated 
data. By the conclusion of this article, the reader will be able to identify 
the type of ML architecture needed for a given problem, be aware of 
how characteristics of the data affect the architecture’s training, and 
understand how to evaluate the ML performance based on properties of 
the dataset.

Introduction
Advances in ML have consistently gen-
erated headlines in the past few years. 
These developments can be attributed 
to sophisticated algorithms, faster 
hardware, and reduced costs for data 
storage. The natural consequence of 
such advancements is the deluge of 
datasets, often known as the age of big 
data. ML algorithms, especially deep 
learning, capitalize on these foundations, 
finding applications in speech recogni-
tion and object detection while opening 
up new possibilities through innovations 
such as ChatGPT (OpenAI 2023). These 
applications vary considerably from one 
another, yet the main task in each case is 
to recognize patterns in datasets.

Pattern recognition is arguably the 
primary driving force behind new sci-
entific and engineering discoveries. For 
instance, Kepler utilized the observa-
tions of Tycho Brahe in astronomy to 
derive the laws governing planetary 
motion, which formed the basis for 
classical mechanics (Bishop 2006). 
However, data was not a driving force 
behind scientific inquiry until recently 
(Brunton et al. 2020), and these trends 
have also impacted NDT/E (Taheri et 
al. 2022), with recent advances such as 

crack detection in concrete using neural 
networks (Saleem and Gutierrez 2021) or 
identifying damage modes in compos-
ite structures via clustering algorithms 
(Xu et al. 2020). Neural networks are 
one of the most widely used algorithms 
today and can be understood as a class 
of mathematical models inspired by the 
structure of the human brain.

However, utilizing neural networks, 
or ML in general, for tasks such as defect 
detection or aiding data interpretation 
is a familiar trend in NDT/E. Martín 
et al. (2007) published a study in 2007 
to interpret ultrasonic oscillograms 
obtained via the pulse-echo method 
with the aid of neural networks. Even 
earlier, in the 1990s, Mann et al. (1992) 
presented the use of neural networks to 
classify ultrasonic signals obtained from 
microfiber cracking in a specimen built 
using a metal matrix composite. These 
examples demonstrate that the NDT/E 
community has long recognized the 
need to augment human judgment with 
pattern recognition algorithms. 

Despite these advances, limita-
tions of ML in NDT/E have mitigated 
its impact on the field when compared 
with other disciplines. A widely acknowl-
edged problem is the limited amounts 

of data available, which is the driving 
force behind the success of ML in many 
applications. Even if the lack of training 
data is not an issue with data-intensive 
applications, such as acoustic emission 
testing (Sikorska and Mba 2008), acquir-
ing data with a high signal-to-noise ratio 
(SNR) is a significant hurdle. Finally, an 
adequate level of understanding and 
experience in ML techniques is required 
to ensure the accurate performance 
of algorithms, which currently needs 
improvement (Vejdannik et al. 2019).

In this article, we address important 
challenges in applying ML to NDT/E by 
providing guidelines for practitioners 
and researchers on building high-quality 
datasets and using appropriate algo-
rithms to ensure high performance 
from trained ML models. The desired 
outcome of this effort is to encourage 
progress in realizing the full poten-
tial of ML in NDT/E, leading to more 
accurate and efficient testing methods 
in the future. Note that the focus of this 
article is on how to assess datasets and 
results. Detailed descriptions of the ML 
algorithms can be found in other papers 
(Taheri and Zafar 2023).

Forms of Machine Learning
ML can be divided into various learning 
paradigms, each with its characteristics 
and uses. Below are descriptions for two 
of these paradigms: supervised learning 
and unsupervised learning. Examples of 
supervised learning and unsupervised 
learning are illustrated in Figure 1. 

Supervised learning: An ML 
paradigm that trains the parameters 
(often numerical weights) of a model 
from input data (features) and known 
output data (labels). Supervised learning 
is the most popular ML paradigm due 
to the ease at which model training can 
be directly translated to the target task. 
The key element of supervised learning 
is the availability of labeled data. Yet in 
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NDT/E, obtaining reliable labels is a spe-
cialized and time-consuming task, which 
is further complicated as manual delin-
eation of discontinuities introduces user 
subjectivity. In turn, mislabeled data can 
be counteractive to the learning process 
of supervised learning ML models 
(Taheri and Zafar 2023; Lever et al. 2017). 

Unsupervised learning: An ML 
paradigm from which an ML model is 
trained from the input data features, but 
without known data labels. Clustering 
is one of the most well-known forms 
of unsupervised learning, wherein 
data is divided into discrete groups. 
Furthermore, dimensionality reduc-
tion and manifold learning methods 
such as principal component analysis 
(PCA) (Lever et al. 2017; Yang et al. 2022) 
and t-distributed stochastic neighbor 
embedding (tSNE) (van der Maaten 
and Hinton 2008) are forms of unsuper-
vised learning. Unsupervised learning is 
useful in NDT/E due to the challenges of 
obtaining labels.

Tips: If dependable labels can be 
obtained for a dataset, a supervised 
learning paradigm is often the simplest 
and most accurate. Assuming no labels 

are known, unsupervised learning is 
powerful but requires domain-specific 
insights from the user. Unsupervised 
learning also generally lacks metrics for 
standardized evaluation. 

Types of Learning Tasks
Each ML paradigm can take on differ-
ent tasks. In this subsection, we sub-
divide supervised learning into its two 
most common tasks (classification and 
regression) and subdivide unsupervised 
learning into its two most common tasks 
(clustering and dimensionality reduc-
tion). These subgroups are illustrated in 
Figure 1. 

Classification: A supervised ML 
model performs classification when it 
determines if the input data belongs to 
one of a discrete set of “classes,” or cat-
egories. For example, different defect 
types (e.g., delamination, crack, no 
defect) may represent different classes 
that we may observe.

Regression: A supervised ML 
machine model performs regression 
when estimating the value of a contin-
uous dependent variable from an input 
independent variable. For example, an 

ML model may process imaging NDT/E 
data to estimate the size of a defect. 

Clustering: The clustering task aims 
to classify data without known informa-
tion by identifying groups, or clusters, 
of data that are similar to each other 
in some manner. Clustering can be 
valuable for identifying unknown rela-
tionships between the data, such as the 
presence of outlier data that could corre-
spond to a discontinuity.

Dimensionality reduction: The aim 
of dimensionality reduction is to reduce 
the data into its essential features. 
Many compression and denoising 
algorithms can be considered forms of 
dimensionality reduction (Yang et al. 
2022). It can separate components (e.g., 
multiple reflections from an ultrasonic 
B-scan) that reconstruct the data when 
added together (Liu et al. 2015). This is 
sometimes referred to as blind source 
separation. 

Tips: It is important to determine 
the appropriate learning task for a given 
problem as it dictates the choice of an 
ML model and the associated challenges. 
Figure 1 describes the most common ML 
models used for each task. 

Characteristics of Machine Learning 
Datasets and Architectures
Most ML architectures learn only from 
the provided data. As a result, ML 
model performance is highly depen-
dent on the dataset quality. The classic 
bias-variance tradeoff is one of the most 
common challenges we must consider 
when building a dataset and choosing an 
architecture.

Bias: One of the most significant 
issues that one must consider when 
creating a dataset is to consider the 
inherent bias that the dataset exhibits 
and how it affects the ML model. That 
is, a dataset will be biased if the training 
data (i.e., the input data and labels that 
are used to initially train the model) 
tends to better represent one scenario 
over another (Mehrabi et al. 2022). Note 
that bias is not inherently bad since 
you may want to focus on a particu-
lar scenario (Miceli et al. 2022), but it 
is important to acknowledge that bias. 
For example, an ML model trained 
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Support vector
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Principal component
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Non-negative matrix
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Figure 1. Learning paradigms of machine learning: (a) supervised learning algorithms 
utilize labeled data, which allows algorithms to be trained directly on the downstream task 
(classification and regression); (b) unsupervised algorithms utilize unlabeled data, which 
are primarily used for clustering and dimensionality reduction. Semi-supervised learning 
algorithms incorporate characteristics of both of these paradigms. 
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on simulated data (for which we can 
produce an abundance of labeled data) 
will learn the specific characteristics of 
the simulated data, but it may not also 
represent experimentally measured data. 
If the labels are imbalanced (e.g., there 
are twice as many cracks as delamina-
tions), then the data will be inherently 
more likely to predict the larger class. 
In short, if a characteristic of our data is 
imbalanced (e.g., twice as many mea-
surements originate from aircraft wings 
than bridges), then the predictions will 
be more accurate for those dominant 
characteristics. An underfit ML model 
is created when trained with a biased 
dataset or when the ML model has too 

few parameters (Figure 2). Such a model 
fails to learn specific characteristics from 
the data, leading to poor performance 
(the classic bias-variance tradeoff is illus-
trated in Figure 3). 

Variance: The effects of data imbal-
ances are difficult to gauge in part due 
to the variance in the dataset, another 
factor that must be considered when 
building data. A common question 
posed by non-ML practitioners is often 
“How much data do you need?” The 
answer is usually “it depends” due to 
the inherent variance in the input data. 
For example, if a crack looks identical 
in every single measurement, then the 
dataset has very low variance. In this 
scenario, you may not need a learning 
system because one datum of a crack 
sufficiently describes all other examples 
(although some pattern recognition is 
still necessary). In contrast, if there are 
a million different and unique permuta-
tions of how a crack is represented, then 
the ML model will need at least a million 
examples to correctly classify cracks. In 
reality, there are usually complex rela-
tionships between all data correspond-
ing to cracks, which the ML model can 
learn. A highly variable dataset with too 
few training examples and too many 
parameters to learn can yield an overfit 
ML model (Figure 2). Such a model 
may find uninformative relationships 
in noise, leading to poor performance 
(Figure 3) (Belkin et al. 2019).

Interpretability: One should also 
consider the interpretability of an 
ML architecture. An interpretable ML 
model is one from which humans can 

comprehend how a decision is made 
(Du et al. 2019). In general, there is a 
negative correlation between accuracy 
and model interpretability (Figure 4). 
Gaining interpretability is a difficult 
problem due to the nature of black-
box models, non-linearities, and 
high-dimensional data visualizations. 
Deep neural networks are the prime 
example, being the most accurate 
models but with little to no interpretabil-
ity of the model decision-making. On the 
other hand, linear models (e.g., linear 
regression) are very interpretable, yet 
often less accurate. 

Tips: Misunderstanding bias and 
variance is a significant pitfall for early 
ML practitioners. For example, novice 
deep learning practitioners often default 
toward increasing the number of layers 
in a neural network, thereby increasing 
the model complexity. However, such 
an architecture is not only more compu-
tationally demanding but can in some 
cases be less effective (due to overfitting) 
and less interpretable than a simpler 
architecture. For this reason, deep neural 
networks are unfavorable in situations 
with limited data samples of potentially 
high variance and situations where 
interpretability and accountability are 
important. In such a scenario, users may 
often analyze their problem using con-
ventional ML models, such as support 
vector machines or linear regression 

Figure 2. Model fitting: (a) underfitting; (b) ideal fitting; and (c) overfitting. An underfitting 
model characteristically suffers from poor performance in the training data, being unable to 
learn the relationships within the data. On the other hand, an overfitting model characteristically 
suffers from over-performing on the training data (often viewed as “memorization”) and fails to 
generalize onto new data samples. Thus, a fundamental goal of machine learning algorithms is 
to find an ideal fitting. 
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Figure 3. Bias-variance tradeoff curve. 
Machine learning models strive to balance 
bias and variance. Simple machine learning 
models typically have fewer parameters, 
wherein the high bias and low variance are 
characteristic of model underfitting. On 
the other hand, complex machine learning 
models have a large number of parameters, 
wherein the low bias and high variance are 
characteristic of model overfitting. 
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Figure 4. Model accuracy versus 
interpretability. In machine learning, 
increased accuracy has a natural consequence 
of decreased interpretability. Accurate models 
tend to capture nonlinear and non-smooth 
relationships, while interpretable models tend 
to capture linear and smooth relationships. 
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models, which are generally more inter-
pretable (Figure 4). In essence, applying 
a model architecture should be inspired 
by the data and underlying factors at 
hand, especially for new datasets that 
have not been utilized for ML in the past. 

Metrics for Evaluation
Evaluation metrics are performance 
measures for comparing ML models and 
understanding specific characteristics 
of the data or task. This is in part due to 
the bias and variance within the data. In 
particular, different evaluation metrics 
can be used to attain either a holistic 
performance or a class-specific measure. 
Here we review several of the most 
widely used metrics for evaluating the 
performance of ML models. 

Confusion matrix: The confusion 
matrix visualizes the predicted values 
against the true values. Elements on 
the diagonal of the matrix indicate 
the number of true predictions of the 
model to the true class (true positives 
and true negatives). The off-diagonal 
elements indicate incorrect predictions. 
Reading the confusion matrix tends to 

give further insight as to what types of 
errors are made for a model and allows 
a holistic set of evaluation metrics. We 
provide a typical illustration in Figure 5, 
together with the common name of such 
evaluation metrics. The confusion matrix 
need not be binary but can be con-
ducted in a multi-class fashion. However, 
in the multi-class scenario, summarizing 
the model performance may be cum-
bersome, and traditionally each class is 
evaluated in a one-versus-all manner. 

Accuracy: Accuracy is often the 
most common evaluation metric. The 
accuracy is the proportion of the model 
predictions correct relative to the true 
class. From the perspective of the confu-
sion matrix, this is equivalent to the sum 
of the diagonal divided by the sum of all 
of the values. Accuracy is an easy value 
to understand. However, for imbalanced 
datasets, the accuracy can be uninforma-
tive. For example, a common scenario 
in NDT/E might be that 99% of the data 
is from a normal material and 1% of the 
data is a material with a discontinuity. If 
100% of the data is classified as normal, 
then the accuracy is 99%. This is often 

considered a good result until you recog-
nize that none of the discontinuities are 
identified. 

Recall: Also known as sensitivity or 
the true positive rate (TPR), the recall is 
the proportion of true positive cases that 
are correctly predicted. In binary classifi-
cation, notice that if 99% of the labels do 
not correspond to the class of interest, 
and 100% of the predictions correspond 
to those classes, then the recall will be 0. 
Hence, recall can be suitable when data 
is imbalanced.

Precision: Also known as the positive 
predictive value (PPV), measures the 
proportion of correct positive predictions 
made. Observe, if 99% of the labels do 
not correspond to the class of interest, 
and 100% of the predictions correspond 
to those classes, then the precision will 
be 0. Therefore, precision can be advan-
tageous when data is imbalanced.

F1 score: The F1 score is a metric 
designed to summarize both preci-
sion and recall. It is defined as the 
harmonic mean of precision and recall. 
The harmonic mean, as opposed to the 
arithmetic mean, addresses large devia-
tions between precision and recall. For 
example, if the precision for a class is 
0, and the recall is 1, then the arithme-
tic mean evaluates to 0.5, which may 
naively indicate a random classifier. On 
the other hand, the harmonic mean in 
this scenario equates to 0, revealing the 
classifier is predicting only one class.

Receiver operating characteristic 
curve: The receiver operating charac-
teristic (ROC) curve can be generated 
when the confusion matrix varies as a 
function of a set call criterion (Figure 6). 
This metric originates from traditional 
statistical hypothesis testing in which 
a binary classifier is based upon the 
premise that some statistic is above or 
below a threshold. In a binary classifica-
tion scenario, the ROC curve shows the 
false positive rate versus the true positive 
rate for all threshold values. To summa-
rize the ROC, the area under the ROC 
curve (AUC) is often reported, where 
a perfect classifier attains a value 
of 1 and a random classifier attains an 
AUC of 0.5. The AUC metric is valuable 
as it is invariant of the chosen threshold 
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Figure 5. A confusion matrix is used to evaluate the performance of a classifier, summarizing the 
information between true and predicted classifications. The confusion matrix entails the number 
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and therefore evaluates the overall clas-
sifier rather than some user-chosen 
value. The AUC is also a feasible metric 
for imbalanced data. 

Tips: Careful choice of evaluation 
metrics should be selected based upon 
the bias and variance of the dataset. 
For an unbiased, well-balanced dataset, 
accuracy is often the most characteristic 
of the model performance. In NDT/E, 
we are often concerned with the true 
positive rate, which is also known as 
the probability of (defect) detection or 
the recall of a defect. In other NDT/E 
scenarios, we may want to ensure that 
normal materials are not predicted as 
material defects (e.g., delaminations), 
in which case, the false call rate (also 
known as the false negative rate) or the 
precision score may be more valuable. 
Note the true positive and false positive 
rates are utilized in traditional NDT/E 
probability of detection assessment 
(Cherry and Knott 2022). In the cases 
where we want a balance between the 
recall and precision scores, the F1 score 
becomes a valuable metric.

Conclusion
ML has a significant potential to contrib-
ute to the NDT/E community. However, 
successful usage of ML algorithms 
demands greater insight into their capa-
bilities and intricacies. This sentiment 
is also true for those in the community 
building new datasets for ML practices. 
Understanding the basic capabilities of 

ML paradigms, navigating how bias and 
variance within the data affect the ML 
model, and establishing how perfor-
mance will be measured will help the 
community create datasets that have the 
greatest impact.   
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MACHINE LEARNING TECHNIQUES FOR 
ACOUSTIC DATA PROCESSING IN ADDITIVE 
MANUFACTURING IN SITU PROCESS 
MONITORING A REVIEW
HOSSEIN TAHERI* AND SUHAIB ZAFAR†

A BS TR AC T

There have been numerous efforts in the metrology, 
manufacturing, and nondestructive evaluation 
communities to investigate various methods for effective 
in situ monitoring of additive manufacturing processes. 
Researchers have investigated the use of a variety of 
techniques and sensors and found that each has its 
own unique capabilities as well as limitations. Among 
all measurement techniques, acoustic-based in situ 
measurements of additive manufacturing processes 
provide remarkable data and advantages for process 
and part quality assessment. Acoustic signals contain 
crucial information about the manufacturing processes 
and fabricated components with a sufficient sampling 
rate. Like any other measurement technique, acoustic-
based methods have specific challenges regarding 
applications and data interpretation. The enormous size 
and complexity of the data structure are significant 
challenges when dealing with acoustic data for in situ 
process monitoring. To address this issue, researchers 
have explored and investigated various data and 
signal processing techniques empowered by artificial 
intelligence and machine learning methods to extract 
practical information from acoustic signals. This paper 
aims to survey recent and innovative machine learning 
techniques and approaches for acoustic data processing 
in additive manufacturing in situ monitoring.  

KEYWORDS: additive manufacturing, in situ monitoring, 
acoustic, machine learning, data processing

Introduction
Various additive manufacturing (AM) methods are utilized for 
manufacturing parts with complex geometries and compli-
cated features that are either unfeasible or highly challenging 
to produce via traditional manufacturing techniques. This 
outstanding capability of AM provides substantial design flex-
ibility and facilitates the production of complex parts with 
marginal added cost compared to subtractive and traditional 
manufacturing methods (Calta et al. 2018). Laser powder bed 
fusion (LPBF), directed energy deposition (DED), and wire arc 
additive manufacturing (WAAM) are among the most popular 
methods of metal AM (Koester et al. 2018). Fused deposi-
tion modeling (FDM), stereolithography (SLA), direct ink 
writing (DIW), and selective laser sintering (SLS) are the most 
common AM techniques for polymers (Baechle-Clayton et al. 
2022; Lee et al. 2020). 

The AM processes not only can cause different mechani-
cal properties for the parts manufactured, but also lead to the 
potential generation of specific types of discontinuities and 
defects in AM parts (Koester et al. 2018, 2019b; Taheri et al. 2017). 
The types of defects in AM parts significantly depend on manu-
facturing process conditions and type of materials. A summary 
of defect types, causes of defect generation, and their potential 
effect on AM parts is presented in Table 1. 

Although inspection and quality assessment for the manu-
factured parts can be done after the production is finished (ex 
situ), there are several significant challenges in traditional ex 
situ inspection methods. One of the major challenges of tra-
ditional inspection of AM parts is due to the capability of AM 
techniques to produce complex-geometry components. This is 
an outstanding capability for AM but makes traditional inspec-
tion of AM parts extremely challenging since many available 
nondestructive testing (NDT) techniques have been developed 
for simpler geometries (Bond et al. 2019). Another primary 
concern in post-production or ex situ inspection of AM parts 
is that AM techniques are used to manufacture many critical, 
high-valued, or exotic parts. Possible rejection of such unique 
parts due to unacceptable quality causes a significant loss of 
time and cost and is not a desirable outcome for industries 
(Koester et al. 2018c; Taheri 2018). Despite the complexity of 
the processes in AM, the layer-by-layer deposition of materials 
allows the measurement and recording of large amounts of 
data on each layer for statistical process monitoring and quality 
assessment (Grasso and Colosimo 2017; Koester et al. 2018b). 
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In situ measurement and monitoring techniques using 
various sensors and NDT methods have been extensively 
utilized and studied over the last few years for understanding 
and predicting the alterations in AM process parameters and, 
consequently, the quality of the manufactured parts. In situ 
measurement data obtained over the entire period of manufac-
turing processes, combined with ex situ material characteriza-
tion and information from process modeling and simulation, 
are essential for reducing the time and cost of process develop-
ment, improving part quality, and minimizing defect formation 
(Hossain et al. 2022; Koester et al. 2018b). 

A large body of existing and rapidly growing literature is 
devoted to in situ monitoring methods, surveying various in 
situ monitoring techniques and sensors used for different 
types of AM processes. High-speed visible imaging (Scipioni 
Bertoli et al. 2017), thermography (Raplee et al. 2017), and 
X-ray imaging (Calta et al. 2018) are among the most used 
methods for in situ process monitoring for AM. Optical-based 
in situ monitoring methods can monitor process conditions 
and variations on the surface of the parts but are limited in 
assessing bulk material behavior. In addition, high-resolution 
imaging at high scanning velocities requires an external illu-
mination source (Lott et al. 2011). Also, a wide range of mag-
nification may be needed to cover the imaging of the entire 
melting pool (Lott et al. 2011). Arntz et al. (2018) analyzed 
the melt flow dynamics of a laser cutting process by in situ 
high-speed video diagnostics (>100 000 fps). They showed 
a correlation between fluid dynamics, cutting velocity, and 

the average roughness of the cut flank (Arntz et al. 2018). In 
contrast, X-ray-based measurement methods can penetrate 
the materials and provide valuable information regarding 
the structure of the part. However, the complexity and cost 
of the X-ray monitoring technique and availability to most 
industries and manufacturers for widespread implementation 
of AM is a significant challenge. On the other hand, acous-
tic-based techniques have been used historically for a variety 
of process monitoring and part qualification applications, 
such as in the welding process, where its rapid solidification 
phenomena are very similar to the AM process (Taheri 2018). 
Recent work has investigated the potential application of 
acoustic emission testing (AET) for AM processes (Koester et 
al. 2016, 2018a, 2019a). 

Accordingly, despite the type of sensing and measurement 
technique used for in situ AM process monitoring, analyzing 
the recorded dataset to identify, map, and potentially charac-
terize the defects will be the next challenging step. The large 
dataset size and real-time processing are significant challenges 
in processing data for in situ measurement (Taherkhani et al. 
2022). Artificial intelligence (AI) and machine learning (ML) 
algorithms can be promising solutions for such problems 
(Taheri et al. 2022). Researchers have used various supervised 
(Gobert et al. 2018), unsupervised (Scime and Beuth 2018), and 
reinforcement learning algorithms (Knaak et al. 2021) for the 
prediction of defects during AM processes. 

AI/ML methods have significant potential to improve the 
AM processes and the quality of manufactured parts. The 

T A B L E  1

A summary of common process-induced defects, their causes, and potential effects on part quality in laser 
metal additive manufacturing (Herzog et al. 2023) 

Defect type Common causes Potential effects

Keyhole pores • Excessive input energy density • Reduction in mechanical properties
• Reduction in fatigue properties

Lack of fusion pores • Insufficient input energy density • Reduction in mechanical properties
• Reduction in fatigue properties

Gas pores • Gas entrapped in feedstock
• Gas entrained into the melt pool • Reduction in fatigue properties

Cracking and delamination
• Residual stresses exceeding the local 

ultimate tensile strength
• Insufficient bonding between layers

• Part failure

Deformation • Residual stresses exceeding the  
local yield stress • Conformance failure

Alloy compositional  
variance

• Improper powder deposition
• Differing chemical mobility

• Preferential evaporation
• Gas incorporation/adsorption

• Inhomogeneous mechanical  
properties

Balling • Low/high input energy density
• Surface oxidation

• Part/conformance failure
• Formation of other defects

Rippling • Instabilities of layer-to-layer deposition • Part failure
• Production failure

Spatter/particle ejection • Overheated melt pool
• Recoil pressure and melt plume • Formation of other defects
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necessity of AI/ML integration to AM processes is due to the 
contemporary need for reduced labor cost and time, digi-
tization in AM, and massive data availability (Kumar et al. 
2023). AI/ML can be integrated into different sectors of man-
ufacturing. In design, AI/ML increases acceptance of novel 
approaches and saves time and resources. In production, 
application of AI/ML saves time and energy and avoids waste. 
Finally, smart manufacturing can be interpreted as application 
of AI/ML in assembly processes to adjust any error in real time. 
Addin et al. (2007) demonstrated the potential application of 
ML in material science and design. In their paper, the Naïve 
Bayes classification is used for deterioration detection in con-
struction. Jin et al. (2020) indicated that an ML model based 
on real-time camera images and deep learning algorithms can 
detect different levels of delamination conditions in FDM and 
determine the tendency of warping before it actually occurs.

This paper aims to survey the application of AI and ML for 
data processing in acoustic-based in situ monitoring of AM 
processes. First, an overview of the acoustic emission NDT 
method for in situ monitoring of AM processes is presented. 
Then, various AI/ML techniques used by different researchers 
and the outcome of their analyses are described. The paper 
concludes with a summary of the discussion, existing chal-
lenges, and potential future work. 

Acoustic Emission for In Situ Monitoring in AM
Acoustic emission (AE), also known as acoustic emission testing 
(AET), as a monitoring technology has been explored by several 
research groups (Koester et al. 2018a; Wasmer et al. 2019; Wu 
et al. 2016). AE refers to the generation of elastic (mechanical) 
waves released by materials when subjected to an external 
impetus, such as raising the gas pressure inside a cylinder, stim-
ulating a given structure will cause deformation inside of it, 
such as crack growth. Consequently, this will trigger the rapid 
release of stored strain energy as transient elastic waves, typ-
ically from a localized source. Formally, AE refers to both the 
generation mechanism and the waves themselves (ASTM 2020). 
Rapid melting and solidification occurring during the AM pro-
cesses is a significant potential source of elastic waves that AE 
can hypothetically detect (Morales et al. 2022). Rapid generation 
of defects, such as cracks or porosity, can also produce elastic 
waves in the form of AE. A standard AE setup includes a set of 
piezoelectric transducers coupled to a structure, connected via 
cables to a monitoring system that performs data acquisition and 
processing. The data is stored on a computer and can be visual-
ized in real time for further analysis after testing is complete. For 
the sake of brevity, this paper will not go into further technical 
details of AE fundamentals (Hossain et al. 2020). 

Most AE systems use a hit-based mode, which identifies 
transient waves in the signal and extracts features from them. 
A small set of parameters can describe discrete AE, which is 
digital (Taheri et al. 2013). The most commonly used parame-
ters are rise time, peak amplitude, duration, MARSE (measured 
area under the rectified signal envelope) energy, and (ring-
down) counts, as highlighted in Figure 1. The rise time is the 

time it takes for the signal to reach its peak amplitude after the 
first threshold crossing (defined by the operator), measured 
in microseconds. The duration of the hit is the time measured 
(usually in microseconds) from the first to the last crossing 
of the threshold, after which the AE hit will remain below 
the signal detection threshold, which the user identifies. The 
duration is often measured in microseconds. Given reflection 
and other mechanisms in a specimen, AE systems use different 
timing parameters to compute rise time and duration.

The burst signal energy, or MARSE, is computed by taking 
the integral over time of the squared electrical signal over its 
duration. Finally, ring-down counts are the number of thresh-
old crossings of an AE signal. It is another valuable parameter 
to help distinguish between AE signals and background noise. 
Combined with other signal features, some or all of these 
parameters can be correlated with the AM process condition 
through statistical signal processing and ML techniques and 
used to identify potential discontinuities in the manufactured 
parts (Bond et al. 2019; Taheri et al. 2019). 

For instance, Li et al. (2021) observed that the AE signals 
collected over a laser-cladding AM process where cracks exist 
in the parts have larger amplitude and energy than AE signals 
collected over a normal cladding process. Hossain and Taheri 
(2021a) discussed the potentials, limitations, and opportunities 
of acoustic techniques for process monitoring of AM. In this 
paper, the authors highlighted the capability of acoustic tech-
niques for volumetric quality identification and adaptability 
to various manufacturing techniques as the major promising 
features of acoustic techniques for in situ process monitoring 
for AM. These abilities have been investigated in various man-
ufacturing processes, including but not limited to AM, by other 
researchers. Ramalho et al. (2022) showed that the influence of 
contamination in WAAM can be identified through the analysis 
of the acoustic spectrum of the process. Ramalho et al. aimed 
to establish a microphone-based acoustic sensing method for 
WAAM quality monitoring. WAAM parts were fabricated with 
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Figure 1. A burst-type AE signal and associated features (from nde-ed.org).
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introduced material contaminations in Ramalho et al.’s work, 
and acoustic signals were recorded during the manufacturing 
process. Power spectral density (PSD) and short time Fourier 
transform (STFT) were used to pinpoint the location of dis-
continuity formation (Ramalho et al. 2022). Active acoustic 
methods, or ultrasonic, have also been studied for in situ mon-
itoring of the WAAM process. Hossain et al. (2020) designed a 
fixture to connect an ultrasonic transducer to the build plate of 
the WAAM system and keep it in constant contact during the 
manufacturing process. The features extracted from ultrasonic 
signals showed that there is a detectable difference between 
the values of root mean square (RMS), root-sum-of-square 
(RSSQ), and peak magnitude-to-RMS ratio (P2R), which was 
interpreted as the indication in process deviation from the 
typical window of WAAM (Hossain et al. 2020). The features 
extracted from AE signals can be correlated with the AM 
process condition through statistical signal processing and ML 
techniques or be used to identify the potential discontinuities 
in the manufactured parts. Despite the large amount of infor-
mation that can be extracted from AE signals, challenges exist 
in interpreting the signals due to the potentially low signal-to-
noise ratio (SNR) and significant variation in the magnitude or 
frequency of the AE signal over the monitoring period of the 
AM process. The literature discussed previously reveals that AE 
shows a promising ability to distinguish variations in the oper-
ating conditions of AM systems, known as process conditions. 
The contrast between AM process conditions is the main cause 
of quality variation and changes in AM parts. Studies have also 
shown that AE not only distinguishes between contrary AM 
processing conditions, which potentially cause different types 
of defects, but also differentiates various levels of defects. As 
an example, Shevchik et al. (2019) showed that three levels of 
quality categories of AM parts manufactured by LPBF can be 
identified by detecting AE signals analyzed by ML techniques. 
In their study, quality categories are defined as high, medium, 
and poor corresponding to various levels of porosity of 0.07%, 
0.30%, and 1.42%, respectively (Shevchik et al. 2019).  

Machine Learning Techniques for Acoustic Data 
Processing
Massive datasets are ubiquitous across scientific and engi-
neering disciplines in the current era, and this trend can be 
attributed to the meteoric rise in computing power over the 
past few decades. Consequently, applying ML algorithms to 
infer patterns and gain insight from these datasets has become 
a new mode of scientific inquiry (Brunton et al. 2020). The 
NDT industry is no exception to this trend, especially for AET.

ML is a subset of AI and is usually divided into three main 
categories: supervised, unsupervised, and reinforcement 
learning. Several learning algorithms fall under each of these 
categories, and in the context of NDT, the fundamental task is 
to discover or find discontinuities in the specimen of interest. 

This section aims to avoid discussing ML jargon for brevity. 
Instead, this paper will elucidate the workings of selected ML 
algorithms relevant to AE testing as applied to AM. This paper 

will explain mathematical concepts with analogies, where nec-
essary, to reach a wider audience.

One of the challenges in AE signal processing is the high 
level of dependency on human expert participation. However, 
this could be a major limiting factor when AE is used for in 
situ monitoring and control of the manufacturing processes. 
Specifically, this can be an issue when instant and accurate 
feedback is desired. AE is a data-intensive technology and 
using ML algorithms to analyze large datasets is of consider-
able interest to researchers and practitioners. Additionally, uti-
lizing ML algorithms makes the technique more quantitative 
and less vulnerable to subjective judgments made by techni-
cians and engineers when analyzing AE test data. However, 
despite the large amount of information that can be extracted 
from AE signals, challenges exist in interpreting the signals due 
to the potentially low SNR and a considerable variation in the 
magnitude or frequency of an AE signal over the monitoring 
period of the AM process. The forthcoming sections briefly 
discuss how classifiers using various ML techniques are built to 
help sort AE data obtained from AE systems in the context of 
AM. ML methods can handle these situations with reasonable 
efficiency. However, there are still some challenges associated 
with various ML techniques that must be resolved.

Supervised Classification of AM Process States
Supervised learning refers to a learning paradigm that requires 
prior knowledge of the answers to the problem at hand, which 
implies providing both the input data and the correspond-
ing output labels when training the ML model. The model 
then learns a pattern to better predict or classify future data 
based on the knowledge from the examples during training. 
Supervised learning is analogous to a pupil learning a subject 
by studying a set of questions and their corresponding 
answers. Classes of problems that require supervised learning 
include regression and classification problems.

Neural Networks
This section provides an overview of neural networks, includ-
ing the differences between artificial neural networks (ANNs), 
convolutional neural networks (CNNs), spectral convolutional 
neural networks (SCNNs), reinforcement learning (RL), and 
support vector machines (SVMs). 

ARTIFICIAL NEURAL NETWORKS

ANNs are a commonly utilized ML architecture, modeled 
loosely on the human brain, mimicking how biological 
neurons communicate with one another. The perceptron, 
demonstrated by Frank Rosenblatt of Cornell in 1958, was the 
first trainable neural network (NN) (Rosenblatt 1958). However, 
it consisted of only a single layer, as opposed to the modern 
iteration of neural nets (also known as feedforward NNs), 
which have multiple layers of neurons (multilayer percep-
tron, or MLP). Figure 2 shows a sample ANN with one input 
layer (with five neurons), two hidden layers (each with four 
neurons), and one output layer with two neurons.
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In NNs, weights are coefficients that act as scaling factors for 
the output of any given layer in an NN. They are the fundamen-
tal parameters of an NN, and the aim is to optimize the values of 
these scalars to minimize the objective (or loss) function during 
the training phase. Back propagation (also known as backprop 
for short) is the primary algorithm for performing gradient 
descent on NNs. It involves performing a forward pass through 
the network by computing the output value of each node. Then, 
a backward pass through the network is performed, adjusting 
the values of the weights in the network.

A weighted linear combination of all its inputs is calculated 
at each neuron. The inputs to the neurons are multiplied by 
their corresponding weights and then summed up. The result 
is then passed through an activation function. The activation 
function decides if the neuron should be activated or not and, 
if activated, decides its value. The sigmoid function is one 
example of an activation function. Training an NN requires 
defining the objective or loss function, typically the mean squared 
error (MSE) for regression problems or the cross-entropy loss for 
binary classification problems (relevant to NDT).

With the rise of more powerful hardware, especially graphics 
processing units (GPUs), NNs can now be trained faster, requir-
ing less computational hours while simultaneously being 
“deeper.” The “deep” in deep learning simply refers to the depth 
of layers in an NN, typically in the hundreds and thousands of 
hidden layers. The use of deep NNs has revolutionized the field 
of AI and ML, and frameworks such as PyTorch allow engineers 
in various fields to apply these powerful algorithms to problems 
in their respective domains of expertise.

CONVOLUTIONAL NEURAL NETWORK

CNNs, also known as ConvNets, are a class of NNs that are 
exceptionally well-suited for applications involving images and 
videos, such as image and video recognition, driverless cars, 
and image classification. Like ANNs, CNNs have an input layer, 

hidden layers, and an output layer. However, the hidden layers 
will have one or more convolution layers (hence the name). 
In conjunction with the convolution layers, CNNs also have 
pooling layers, and together form a single layer of a CNN. The 
architecture of a CNN is shown in Figure 3.

The function of the convolution layer is to detect specific 
features in an image using the convolution operation that 
utilizes the concept of the inner (or dot) product between two 
vectors. In a CNN, the convolution operation is executed using 
a kernel that is the same size as the window of data it operates 
on. It is important to note that the kernel elements are weights 
the network learns when trained. The pooling layer is utilized 
to reduce the spatial dimension of the data, which helps 
reduce computational costs and makes the network resistant 
to overfitting. Each convolution layer has a rectified linear unit 
(ReLU) activation function that converts all negative values to 
zeros. The fully connected layer is not a characteristic of the 
CNN and contains an activation function just like an ANN, 
converting features into class probabilities (in classification 
problems).

CNNs can process data with a similar grid structure. Local 
connections, weight sharing, and down-sampling are the main 
characteristics of CNNs that make them suitable for several 
types of AE signal analysis. CNN methods are based on the 
translation invariance of feature extraction and ignore the time 
correlation of signals. In the case of cyclic NNs, the complex 
structure and numerous parameters involved in the process 
make them difficult to optimize and train. Considering these 
limitations and challenges, research needs to be done to 
enhance the application of deep learning techniques for AE in 
situ monitoring for manufacturing processes, specifically in the 
case of AM. Li et al. (2022) presented a new AE signal recogni-
tion method based on a temporal convolution network called 
acoustic emission temporal convolution network (AETCN) for 
real-time polymer flow state monitoring in an FDM process. 

ME | AI/ML

Figure 2. An artificial neural 
network with various 
components labeled. The 
arrow shows the direction of 
back propagation. 
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AETCN uses the dilated causal convolution and dilation con-
volution as the cornerstone of building a network such that it 
has both the convenience of convolution and the advantage 
of using correlation information of time series, so it reduces 
the intervention of expert knowledge in feature extraction. To 
obtain information over time in an AETCN, causal convolu-
tion is used. In causal convolution, the output prediction Yt of 
a time sequence at time t only depends on the timesteps from 
the sequence Xt and before Xt. The fact that causal convolution 
cannot see the future data is the main difference with tradi-
tional CNN. Figure 4 shows the basic idea of the AETCN and 
its construction. In the proposed AETCN by Li et al. (2022), to 
prevent performance degradation and gradient disappearance 
or explosion in the deep network, a residual network structure 
was introduced as can be seen by “Resblock” in Figure 4b. 
Network degradation, gradient explosion, and gradient sub-
traction can influence the performance of a deep NN, and this 
effect increases as the network becomes deeper.

The source of elastic waves generated over the AM 
processes is commonly intermittent, nonstationary, or a 
time-varying phenomena. This characteristic means that the 
generated acoustic waves are subject to rapid change in time 
and frequency. In such a situation, the wavelet transform 
(WT) can be an efficient method of capturing both time and 
frequency information of the signals. To address this issue, 
several researchers used WT for the preliminary signal process-
ing and feature extraction from AE signals recorded from in 
situ AM process monitoring. Hossain and Taheri (2021a) used 
WT to decompose the AE signals recorded during the differ-
ent process conditions in a DED process into various discrete 
series of sequences over different frequency bands. These 
segments were then analyzed to identify different process con-
ditions using a CNN. The results show a classification accuracy 
of 96% and validation accuracy of 95% for different process 
conditions (Hossain and Taheri 2021a, 2021b).

SPECTRAL CONVOLUTIONAL NEURAL NETWORK 

Researchers at Empa, the Swiss Federal Laboratories for 
Materials Science and Technology, have done extensive work 
on the application of ML techniques for AE signal process-
ing in AM in situ monitoring and published their approaches 
in several articles (Masinelli et al. 2021; Shevchik et al. 2018, 
2019; Wasmer et al. 2018, 2019). They used a fiber Bragg grating 
sensor to record the acoustic signals during the powder 
bed AM process at different intentionally altered processing 
regimes. The acoustic signals’ relative energies were consid-
ered the features and extracted from the frequency bands of 
the wavelet packet transform (Shevchik et al. 2018). Wavelet 
packet transform can be described as applying a set of filters 
on a signal, as shown by Equations 1 and 2:

  (1)      φ  j   (n)  =  ∑ 
n

    h  0   (k)   √ 
_

 M   φ (Mn − k) , k ⊂ Z  

   (2)     ψ  ji   (n)  =  ∑ 
n

    h  m−1   (k)   √ 
_

 M   ψ (Mn − k) , k ⊂ Z  

where 
  h  0    is a low pass and   h  m    is a high pass filter, 
φ and ψ are the scale and wavelet functions, respectively, 
j is a scale, 
n is the current sampling point of the digitized signal, and
the parameter m is the total number of filter channels.

A spectral convolutional neural network (SCNN) classifier 
was developed by Mathieu et al. (2014). It could differentiate 
the acoustic features of the different quality of AM parts with 
the different level of porosities. The confidence in classifica-
tions varies between 83% and 89%.
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Figure 3. A 
convolutional 
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(CNN) model. 
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REINFORCEMENT LEARNING

Using the same dataset, the Empa group studied the appli-
cation of a reinforcement learning (RL) approach to classify 
different levels of quality for parts manufactured using AM 
(Wasmer et al. 2019). The RL technique is inspired by the 
human cognitive capabilities of learning in its surrounding 
world. In RL, knowledge is acquired through trial and error 
(or reward and penalty) in an environment by performing the 
actions and seeing the results of actions (Sutton and Barto 
2018). In their approach, a Markovian process is the way of 
interaction between the RL agent and the environment. The 
initial state was set to   s  0    in the classification process and the 

algorithm reached the goal   s  g    by the actions that win the 
maximum reward. The governing equation for the optimal 
reward is given by Equation 3: 

  (3)              T  π   (s)  = E { ∑ 
t
   λR ( s  t  , π [ s  t  ] )  |    s  0   = s }   

where 
E is the expectation, 
the discount factor λ ⊂ [0,1), and π(st) is a policy that maps 

the states to the actions, and 
R is the space of the rewards.
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The confidence level of the RL-based classification in this 
case (Wasmer et al. 2018) was between 74% and 82%, which 
shows a slightly lower performance compared to their SCNN 
approach.

Despite the encouraging results from the SCNN and RL, 
researchers at Empa empowered their acoustic-based ML 
approach by verifying the results using high-speed X-ray 
imaging techniques. Four categories of conduction welding, 
stable keyhole, unstable keyhole, and spatter were defined 
in a laser welding experiment and gradient boost with both 
independent component analysis and with CART were used to 
classify the different process conditions. 74% to 95% of accuracy 
was achieved in their assessments (Wasmer et al. 2018).

SUPPORT VECTOR MACHINE 

Support vector machines (SVMs) can be used for both classi-
fication and regression problems, although typically used for 
classification. The idea behind the SVM is to find the optimal 
hyperplane (the hyperplane with the highest margin) that 
separates the two classes. SVM is fundamentally a binary 
classifier, and a hyperplane is a decision boundary that sep-
arates the two classes. If the dimension of the input data or 
the number of features is two, then the hyperplane is a line. 
For a three-dimensional feature space, the hyperplane is a 
two-dimensional plane. 

AE, in combination with accelerometers and thermo-
couples data, was used by Nam et al. (2020) to train an SVM 
algorithm for diagnosing health states of the FDM process. 
The researchers first obtained the RMS values from the AE, 
accelerometers, and thermocouples data. They applied both 
linear and nonlinear SVM algorithms to identify the state of the 
FDM process as healthy or faulty. This research is a good case 
study of how to use SVMs for studying an AM process with 
the help of AE. However, it is to be noted that the SVM algo-
rithm is ineffective when the dataset has more noise, which is a 
downside of using AET. 

Unsupervised Classification of AM Process States
Unsupervised learning is a learning paradigm that does not 
require prior knowledge of the solution to the problem at 
hand, which implies that specifying the output is not required, 
or in some cases where such data may not be available. The 
implications of this approach are that we can learn inherent 
patterns in the data that we were not privy to; there may be 
several solutions to the problem; and different results can 
be obtained each time we run the model. In the following 
sections, we discuss the application of specific unsupervised 
learning algorithms to the study of AM using AET.

CLUSTERING BY FAST SEARCH AND FIND OF DENSITY PEAKS 

The clustering by fast search and find of density peaks 
(CFSFDP) approach was used by Liu et al. (2018) to identify 
the FDM process state. Liu et al. used reduced feature space 
dimension by combining both time and frequency domain 
features and then reducing them with the linear discriminant 

analysis for their work. Consequently, CFSFDP, as an unsuper-
vised density-based clustering method, is applied to classify 
and recognize different machine states of the extruder (Liu et 
al. 2018). Density-based clustering methods such as CFSFDP 
used by Liu et al. update the clusters iteratively without 
grouping the data. This approach is contrary to distance-based 
clustering methods such as hierarchical and partitioning algo-
rithms like k-means. As a result of using CFSFDP, the FDM 
machine states were identified within a much smaller feature 
space, which helps to reduce the computational cost of classi-
fication and state identification. Liu et al.’s work declared that 
reducing dimension in feature space remarkably improves the 
efficiency of state identification. For dimensionality reduction, 
the operator part of the algorithm can be customized by linear 
discriminant analysis.

K-MEANS CLUSTERING

The k-means clustering algorithm is one of the most widely 
used algorithms due to its flexibility and ease of implementa-
tion. It is an unsupervised learning algorithm, a class of ML 
algorithms that can find patterns within a dataset without 
being explicitly told what the underlying mechanism is or 
might be. The only user-defined parameter required to train 
a k-means clustering algorithm is the number of clusters, k. 
Figure 5 shows an example of two clusters, with optimal loca-
tions of centroids represented by triangles.

The algorithm works as follows:

1. The user defines the number of clusters, k, and a corre-
sponding number of cluster centroids (or means) are 
randomly chosen.

2. Each observation (or point) in the dataset is assigned to one 
of the clusters, based on its distance from a given centroid. 
There are several metrics used in ML to compute distances, 
but a commonly utilized measure is known as the Euclidean 
distance. 

Figure 5. Setup for a k-means clustering algorithm.
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3. The centroid locations are recomputed based on the assign-
ment of data points in the previous step.

4. The process repeats, until one of the following conditions is 
met: (a) the centroid locations are stable; (b) the data points 
do not change clusters; or (c) the maximum number of itera-
tions has been reached.

An application of the k-means clustering algorithm to the 
in situ monitoring of an AM process using AET is found in 
Taheri et al. (2019). In this study, acoustic signatures were used 
for in situ monitoring of the DED AM process where the depo-
sition was performed with the machine operating in five differ-
ent states. These states included “control,” under which there 
was just powder spray, and “baseline,” under which there were 
no active deposition activities, as well as optimum (normal) 
process, low laser power, and low powder feed. 

Dominant features of acoustic signatures in both the time 
and frequency domains were identified and extracted from 
the acoustic signatures for all process conditions. The k-means 
clustering algorithm was applied to classify different process 
conditions, as shown in Figure 6. Correlations were demon-
strated between metrics and various process conditions, which 
showcase the capability of AE for in situ monitoring of the AM 
process. Clear isolation of the baseline condition, at which no 
active deposition or laser-powder interaction occurs, shows 
that basic acoustic response of the AM system is distinct from 
when active manufacturing is happening. The next observa-
tion is related to the optimum settings (C1) versus powder 
feed only (CO) conditions. However, a separation of C1 and 
CO clusters was observed for C1 and CO, but the smaller iso-
lation of clusters and larger overlap of cluster data could be 
an indication of significant influence of laser-material interac-
tion compared to system and material characteristics. Last but 
not least, comparison of the conditions where manufacturing 
processes are happening (C1, C2, and C3) is interpreted as the 

indication of AET for separation of manufacturing processes 
and significant influence of laser-material interaction in AM 
processes.

Summary and Conclusions
Acoustic techniques are proven methods for many traditional 
inspection and quality monitoring applications. Due to the 
promising capabilities of acoustic methods for nondestructive 
inspection and monitoring of many kinds of processes, they 
have been identified as an auspicious candidate for in situ 
measurement and monitoring for AM processes. Two major 
reasons impede the application of acoustic techniques for in 
situ monitoring in AM processes. First is the quite low SNR 
due to the high sensitivity of acoustic sensors to environmen-
tal noise, which is the case in AM processes. The second is 
interpreting the signals to identify a correlation between the 
acoustic signals and the actual events. Various sensors and 
sensing approaches have been used to enhance the low SNR, 
such as using noncontact acoustic measurement via micro-
phone or laser. Researchers have also utilized fiber-optic 
sensors to improve acoustic signal detection, which provides a 
new way of improving signal recording for in situ monitoring. 
Advanced signal processing techniques were used to perform 
data preparation, such as noise reduction and band filtering, 
to address the data processing and interpretation challenge. 
Consequently, ML algorithms have been adapted in different 
formats to extract and analyze the features of acoustic signals 
effectively. These algorithms showed an effective way and 
significant improvement in analyzing acoustic signals under 
different conditions for in situ process monitoring of AM and 
provide a promising pathway for the manufacturers to imple-
ment acoustic techniques for monitoring and maintaining the 
quality of products. Sensor integration into the AM system, 
detection scheme, and SNR are the existing major gaps and 
barriers in acoustic-based in situ monitoring of AM processes 

ME | AI/ML

20

15

10

5

0 

Centroid amplitude of
Fourier transform (CA)

Centroid frequency
of Fourier transform (Cf) (kHz)

Pe
ak

 a
m

pl
itu

de
 o

f
Fo

ur
ie

r t
ra

ns
fo

rm
 (P

A)

2.5
2

1.5
1

0.5
0 1150

1200

1250

1300

1350

1400

BL: Baseline
C1: Optimum settings
C2: Low power
C3: Low powder feed
C0: Powder feed only

20

15

10

5

0 

Centroid amplitude of
Fourier transform (CA)

Centroid frequ
of Fourier transform

Pe
ak

 a
m

pl
itu

de
 o

f
Fo

ur
ie

r t
ra

ns
fo

rm
 (P

A)

2.5
2

1.5
1

0.5
0 1150

1200

1250

1300

1350

1400

BL: Baseline
C1: Optimum settings
C2: Low power
C3: Low powder feed

p

C0: Powder feed only
pp

Figure 6. A three-
dimensional graphical 
representation of the 
additive manufacturing 
process condition using 
three spectral features 
(Taheri et al. 2019). 

58 M A T E R I A L S  E V A L U A T I O N  • J U L Y  2 0 2 3

2307 ME July dup.indd   582307 ME July dup.indd   58 6/19/23   3:41 PM6/19/23   3:41 PM

ASNT grants non-exclusive, non-transferable license of this material to  .
All rights reserved. © ASNT 2024. To report unauthorized use, contact: customersupport@asnt.org



and parts. Future direction and recommendations of research 
in this field include improving SNR by reducing undesired 
influence of environmental and systems factors, integration of 
complementary monitoring techniques such as X-ray to facili-
tate subsurface defect monitoring, and surface-sensitive optical 
detection approaches. Integrating other measurement tech-
niques with AET in a combined approach reduces signal devi-
ations caused by other variations in the process and improves 
the reliability in detecting process abnormalities that lessen the 
quality of the AM components. Lastly, a comprehensive study 
on an inclusive model of effect, optimization, and sensitivity 
of multiple process parameters on the final AM part quality is 
required for successful implementation of this technique in the 
AM industry. 
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A BS TR AC T

Adaptive resistance spot welding systems typically 
rely on real-time analysis of dynamic resistance 
curves and other indirect measurements to estimate 
weld progress and guide adaptive weld control 
algorithms. Though efficient, these approaches 
are not always reliable, and consequently there 
is a need for improved feedback systems to drive 
adaptive welding algorithms. As an alternative, an 
advanced in-line integrated ultrasonic monitoring 
system is proposed, with real-time weld process 
characterization driven by artificial intelligence (AI) 
to create actionable feedback for the weld controller. 
Such a system would require real-time ultrasonic 
data interpretation, and for this a solution using 
deep learning was investigated. The proposed 
solution monitors the ultrasonic data for key process 
events and estimates the vertical size of the weld 
nugget proportional to the stack size throughout 
the welding process. This study shows that adaptive 
welding using ultrasonic process monitoring backed 
by AI-based data interpretation has immense 
potential. This research highlights the importance of 
nondestructive evaluation (NDE) in the zero-defect 
manufacturing paradigm.

KEYWORDS: resistance spot welding, ultrasound, artificial 
intelligence, deep learning, NDE 4.0

Introduction
Zero-defect manufacturing (ZDM) has been a dream for 
decades (Psarommatis et al. 2022, 2023). With respect to many 
manufacturing processes, this dream is considered within 
reach given the novel technologies that should be ubiqui-
tous in an idealized Industry 4.0. Unfortunately, however, 
Industry 4.0 is not yet fully realized and thus the realization of 
ZDM suffers as well (Psarommatis et al. 2022). Though some 
requirements of Industry 4.0 are increasingly fulfilled (e.g., 
big data production, storage, and analytics; increased con-
nectivity and Internet of Things; industrial automation), its 
full realization requires NDE 4.0 (Meyendorf et al. 2017). For 
example, NDE 4.0 is a prerequisite for Industry 4.0’s widely 
unfulfilled key requirement of decentralized and autono-
mous decision-making (Escobar et al. 2021). Fulfillment of 
these requirements with respect to manufactured products 
and joining processes is promised by NDE 4.0 through (a) the 
automation of nondestructive inspections; (b) the automated, 
consistent, generalized, and accurate interpretation of inspec-
tion data; and (c) the resultant characterization of manufac-
tured products, which would be used to inform downstream 
decision-making without human intervention. 

Resistance spot welding (RSW) is a manufacturing process 
for which the ZDM dream is potentially within reach. Many 
industries heavily rely on RSW joints including automo-
tive, aerospace, rail, and military. RSW is a favorable joining 
method in many cases because it is inexpensive to perform, 
has a fast cycle time, maintains integrity of the joined sheets, 
has minimal added weight and volume, is highly adaptable, 
is robust, and is generally amenable to nondestructive evalu-
ation (NDE) (El-Banna 2006). However, across all industries, 
novel materials are increasingly being developed and incor-
porated into manufactured products (Perez-Regalado et al. 
2013). For example, in the automotive industry—which uses 
RSW approximately 5000 to 7000 times per vehicle—increas-
ing vehicle electrification imposes new engineering challenges 
with respect to safety, lightweighting, and weight distribu-
tion (Dugmore 2021). Consequently, there is an increasing 
use of novel lightweight and high-strength materials (e.g., 
advanced high-strength steels and aluminum alloys), as well as 
dissimilar-material joints, which pose new challenges for RSW 
(Dugmore 2021). Thus, there is an increasing demand for solu-
tions that enable ZDM of RSW.
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There have been several attempts to support the reali-
zation of ZDM in RSW through the use of adaptive welding 
systems. Conceptually, modern adaptive welding systems 
monitor one or more indirect proxies of weld progress (e.g., 
dynamic resistance curves, current, voltage, force, tip dis-
placement [El-Banna 2006; Neugebauer et al. 2013; Reis et al. 
2016]), process these monitored features in real time to create 
feedback, and serve the feedback to an algorithm that adapts 
weld process parameters (e.g., weld time, force, and current) 
accordingly. In practice, these proxies do not produce suffi-
ciently reliable and consistent feedback for adaptive weld con-
trollers, so these systems generally fail to meet expectations 
and consequently many users revert to fixed schedules with 
adaptive capabilities disabled. 

RSW is well-positioned to simultaneously meet the require-
ments of NDE 4.0 and achieve a breakthrough in ZDM, largely 
due to recent advancements in RSW NDE research. RSW 
NDE can be conducted either in-process (during the weld) or 
post-process (after the weld) using a variety of NDE modalities 
(Runnemalm and Appelgren 2012; Summerville et al. 2019). 
One of the most prevalent modalities is ultrasound (Chertov 
and Maev 2004; Denisov et al. 2004; Ouellette et al. 2013; Maev 
et al. 2014, 2016; Sung Hoon et al. 2020). Ultrasonic inspection 
has important advantages in inspection speed, insensitivity 
to sample thickness, adaptability, and the ability to directly 
inspect the internal geometric properties of the joint. The 
current state of the art in ultrasonic NDE for RSW consists of 
post-process offline inspection via portable ultrasonic systems 
with 2D matrix probes (e.g., Denisov et al. 2004; Maev et al. 
2005), post-process robotized in-line systems with a similar 
ultrasonic configuration, and in-line real-time process moni-
toring systems using single-element probes (e.g., Chertov and 
Maev 2004; Ouellette et al. 2013; Maev et al. 2013, 2014; Sung 
Hoon et al. 2020). In any case, many NDE 4.0 requirements are 
already being met for such inspection systems, but only the 
in-line approach can provide real-time process monitoring and 
NDE data with 100% joint coverage, which is actionable in the 
context of an adaptive welding system that facilitates ZDM.

In its current form, the in-line inspection approach 
involves embedding a single-element ultrasonic transducer 
into a welding electrode (Chertov and Maev 2004; Ouellette 
et al. 2013; Maev et al. 2014, 2016; Sung Hoon et al. 2020). The 
transducer is immersed in flowing water, which both cools the 
transducer and provides coupling. The copper electrode caps 
focus the ultrasonic waves into the heat-affected zone of the 
workpiece and provide coupling against the stackup due to the 
application of intense force during welding (Maev and Chertov 
2010). Throughout the welding process, A-scans are sampled 
every millisecond in pulse-echo mode, aiming through 
the center of the weld region between the electrodes. An 
M-scan—a 2D ultrasonic signature of the weld process—is then 
formed by horizontally stacking A-scans, and currently only 
post-process interpretation of the ultrasonic signature is con-
ducted for quality control (Maev et al. 2021). Therefore, toward 
adaptive welding, a major missing piece in existing in-line 

ultrasonic systems is real-time interpretation of the sequence 
of A-scan signals as they are collected.

Classically, ultrasonic NDE data interpretation may involve 
signal/image processing, statistical analyses, search algorithms, 
model fitting, and hand-coded rules for decision-making. In 
some cases, these classical approaches are sufficient. However, 
in many application domains, such as RSW inspection—due 
to the many potential geometries, material combinations, 
and weld parameterizations, which can be encountered in 
a production environment—these approaches fail to meet 
the required performance, inference speed, and generality. 
Recently, deep learning approaches have been increasingly 
applied, to great effect, to a variety of problems in ultrasonic 
NDE data interpretation spanning essentially all use cases 
and specific tasks (e.g., defect detection and characterization, 
measurement automation, and so on [Cantero-Chinchilla et al. 
2022; Taheri et al. 2022]). For example, Virkkunen et al. (2021) 
used a convolutional neural network (CNN) for crack detec-
tion in ultrasonic inspection data from butt-fused stainless 
steel pipes. Similarly, Shafiei Alavijeh et al. (2020) developed 
an ultrasonic inspection approach using a chord transducer for 
butt-fused plastic pipe joints. In this case, they used an autoen-
coder to conduct outlier detection on A-scans. Subsequently, 
the group developed an approach that classified A-scans in 
terms of defect presence/absence and according to defect 
type when a defect is detected (Shafiei Alavijeh et al. 2021). 
They compared several classical machine learning algorithms 
to four deep neural network architectures and determined 
that a CNN generally achieved the best performance on this 
task. Guo et al. (2019) combined CNN with recurrent neural 
networks (gated recurrent unit [GRU] and long short-term 
memory [LSTM]) to achieve high-performance debonding 
defect detection in ultrasonic C-scans of braided composite 
materials. They subsequently refined the approach in later 
works by instead framing the problem as semantic segmen-
tation (Guo et al. 2023). Huang et al. (2022) also combined 
CNN and LSTM to detect defects in copper pipes in data from 
laser ultrasonic scanning. Maev et al. (2021) used an object 
detection approach with YOLOv3 (the “you-only-look-once” 
v3 object detector) to conduct post-process characterization 
of ultrasonic weld process signatures by identifying expulsions 
(discharge of molten material from the stackup due to intense 
pressure and rapid heating), while also identifying discrete 
weld-process events and measuring the position of the nugget 
at its maximum vertical size within the welded stackup. A more 
recent study by Zamiela et al. (2023) combined infrared with 
ultrasonic imaging data and developed a two-branch U-Net, 
which conducts semantic segmentation on the aligned images 
simultaneously to identify and characterize pores in metal 
structures in a single, unified output map. Deep learning has 
been proven to outperform classical computational NDE data 
interpretation approaches in terms of performance, inference 
speed, and generality; thus, it is a promising potential solution 
for time-sensitive contexts such as real-time inspection and 
adaptive welding.
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The purpose of this study was first to investigate the fea-
sibility of a deep learning approach for real-time interpreta-
tion of ultrasonic NDE data from RSW process monitoring. 
Subsequently, a novel approach was developed and evaluated 
for real-time characterization of ultrasonic data from the RSW 
process, which adheres to the needs of an adaptive weld con-
troller that requires either continuous or discrete feedback.

Methodology
A summary of the experimental work is provided here, and a 
detailed description of the methodology follows. First, a large 
dataset of weld samples was developed with ultrasonic process 
monitoring enabled. Subsequently, a machine learning task 
was devised, the outputs of which could be used as actionable 
feedback for welding. The ultrasonic M-scan data were labeled 
to produce a machine learning dataset accordingly. A feasibil-
ity study was conducted to identify neural network architec-
tures to perform the task within time constraints, and finally a 
feasible neural network was trained and evaluated. 

Ultrasonic Configuration
Ultrasonic data were collected using an in-line real-time ultra-
sonic process monitoring system for spot welding (Figure 1). In 
this system, a 12 MHz single-element transducer is embedded 
into a welding electrode and immersed in water to keep the 
transducer cool; the water also acts as an ultrasound couplant. 
The transducer aims through the center of the weld region, 
between the electrodes. Ultrasonic A-scans are obtained 
every 1 ms in pulse-echo mode with a sampling frequency 
of 125 MHz. The number of samples in a given A-scan was 
set such that the entire stackup was visible in the A-scan 

throughout welding. Resultant M-scans were composed by 
horizontally stacking the A-scans.

Dataset Development
A weld dataset of 18 223 RSWs, with the ultrasonic process 
monitoring system enabled, was developed. The welds were 
designed to cover a wide variety of weld geometries, materials, 
and parameters that are observed in automotive assembly. The 
dataset covered more than 80 sheet thickness combinations 
including 2- and 3-sheet similar- and dissimilar-material welds 
of 0.65–2.0 mm sheets made of mild and high-strength steels. 
Weld times varied from 75 to 400 ms, force ranged from 300 to 
1000 kN, and current from 6 to 13 kA. Resultant welds were fab-
ricated with diameters ranging from 0 to ~10 mm, with vertical 
maximum nugget size proportional to stack of ~0.0–0.8, and 
in some cases expulsions were purposely induced. Resultant 
M-scans were generally 75–400 pixels wide (based on weld 
time) and 100–400 pixels high (based on A-scan length, which 
varies by stack size).

For each weld, alongside its M-scan (Figure 2a), various 
metadata were captured, such as current-on timing, current-off 
timing, sheet thicknesses, and so forth. Metadata were used in 
the data preprocessing and augmentation stages to compute 

Figure 1. Ultrasonic configuration schematic for in-line real-time 
ultrasonic process monitoring system for spot welding. Ultrasonic 
waves (gray) are transmitted into the welded stack every 1 ms 
throughout welding process, and the transducer receives reflected 
waves as A-scan signals. The graphic shows an instant of an 
asymmetrical two-sheet weld already in progress (i.e., the molten 
nugget has been formed).
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Figure 2. Ultrasonic M-scan samples from welds of same stackup 
but varying quality: (a) ultrasonic time of flight (Y axis) given the 
weld time (X axis). The top-left weld fails to breach the steel-steel 
interface, top-right weld insufficiently penetrates top sheet, bottom-
left weld is ideal, and bottom-right weld features an expulsion (abrupt 
discontinuity in weld process). (b) Ultrasonic M-scan sample labeled for 
deep learning model development. 
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the regions of interest in ultrasonic scans and facilitate image 
cropping (see the Model Training and Performance Evaluation 
Section). The M-scans were labeled (Figure 2b) for the timing 
of four types of key events (see the cumulative distribution 
function plots in Figure 3): melting (the moment at which the 
molten nugget was first visible; 17 102 events); steel-steel inter-
face disappearance (SSID; the moment at which all steel-steel 
interfaces appeared to have been breached by the molten 
nugget; 16 907 events), saturation (the moment at which the 
molten nugget appeared to stop growing vertically; 14 500 
events); and expulsions (all first moments of discontinuity in 
the M-scan, which were suspected to be due to expulsion; 6375 
events). In addition, the top and bottom of the nugget as well 
as the top and bottom of the stack were labeled, relative to the 
ultrasonic M-scan, at the moment of saturation. As observed 
in the M-scan, historical vertical maximum nugget size (MNS) 
proportional to the stack throughout the weld was then 
derived from these labels. To derive MNS, a linear interpolation 
l between melting-event timestamp to saturation-event time-
stamp (horizontally) and zero to maximum overall nugget size 
proportional to the stack (vertically) was first computed. Given 
melting timestamp m, saturation timestamp s, maximum overall 
nugget size proportional to the stack n, and weld timestep t:

 l = 0, if t < m 

 l =   t − m _ s − m   × n, if m ≤ t ≤ s 

 l = n, otherwise 

Then, a sigmoidal function of the following form was fitted 
to l using the SciPy software package (Virtanen et al. 2020):

 y =   n _ 
1 +  e   −a ×  (  t−b )   

   

where
a is a free parameter that controls the nugget growth rate, 

and
b is a bias that shifts the nugget growth in time.  

Finally, a blend between l and y was computed such that 
the curve began fully linear at the melting point (i.e., the 
weight of l = 1, weight of y = 0) and ends fully sigmoidal at the 
saturation point (i.e., the weight of l = 0, weight of y = 1). MNS 
was the resultant blended curve.

Consequently, at each time step of the welding process, 
the model was tasked with binary classification for the first 
occurrence of each of the key events: melting, SSID, saturation, 
and expulsion. That is, for each event, the model was tasked 
to output zero for every time step prior to the first occurrence 
of the event and one for every time step thereafter. The model 
was also tasked with regression of MNS.

Model Design, Training, and Performance Evaluation
The machine learning task defined previously is essentially 
many-to-many sequence processing. Many-to-many sequence 
processing produces any number of sequential outputs given 
any number of sequential inputs; here, for every A-scan input 
the model is tasked with producing a corresponding output 
that describes the occurrence of events and MNS. All outputs 
are real numbers in the range of zero to one. A 1 ms per A-scan 
processing time constraint was imposed due to the required 
temporal resolution and response time such that feedback to a 
weld controller is actionable, as well as the rate of data acqui-
sition such that the AI system does not accumulate latency 
throughout the course of a weld. Due to the severe computa-
tional time constraint of <1 ms per A-scan, the aim to maximize 
performance, and the sequential nature of the ultrasonic data, 
a recurrent neural network approach was investigated. In par-
ticular, to exploit the spatial information in each A-scan and 
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long-term dependencies in weld sequences, convolutional 
long short-term memory (ConvLSTM) architectures (Shi et al. 
2015) were explored. All investigations were conducted with 
Tensorflow (Abadi et al. 2015) and Keras (Chollet et al. 2015) for 
Python. Due to the sequential processing of ConvLSTMs and 
relatively small sequence items (resized A-scans; see the Model 
Training and Performance Evaluation Section), the amenability 
of processing to parallelization is heavily reduced for this task, 
and it was consequently found in preliminary work that CPUs 
were faster for both training and inference. Sequence process-
ing using ConvLSTM differs from, for example, a pure CNN 
or transformer architecture, which is highly parallelizable and 
benefits greatly from computing on GPU. Thus, all computa-
tions were performed using an Intel® Core™ i7 CPU.

FEASIBILITY STUDY

The feasibility of a ConvLSTM-based architecture was inves-
tigated with input M-scans (i.e., arbitrary-length sequences of 
A-scans) resized vertically to 128 pixels. This investigation was 
designed to estimate the upper limit on the number of filters 
per layer and the number of layers based on the processing 
time requirement of <1 ms per A-scan in a production environ-
ment, which includes input preprocessing and potential com-
munications overhead. Preliminary tests determined that the 
production environment ran inference approximately 35–45% 

faster than the development environment due to, for example, 
the removal of training overhead in the exported network 
graph, differences in Tensorflow compilation, differences in 
programming language, and so on. Accounting for the speedup 
in the production environment, along with overhead from 
preprocessing and so forth, a cutoff of 1.1 ms per A-scan was 
imposed. An overarching architecture (Figure 4) was designed 
with one ConvLSTM module and one max pooling operation 
per layer; variants were tested having 1–5 layers and an initial 
layer with 8–32 filters, with number of filters doubling per layer. 
Following a flattening, the last layer was a time-distributed (i.e., 
shared across all time steps) fully connected layer with five 
outputs. To guard against extra computational overhead from 
initial resource allocation, one M-scan was fully processed 
prior to recording inference times. Subsequently, 10 randomly 
selected, arbitrary-length M-scans, comprising of a total of 2589 
A-scans, were processed, during which inference times were 
recorded. As M-scan length has no impact on mean inference 
time per A-scan, though it may subtly impact variance of infer-
ence times, the selected M-scans were held constant through 
all trials so that the same exact A-scans were processed in each 
trial. The largest feasible model was used for further training 
and evaluation.

MODEL TRAINING AND PERFORMANCE EVALUATION

At both training and testing time, M-scan images were cropped 
vertically to tightly focus on the welded stackup, resized to a 
height of 128 pixels, and cropped horizontally starting at the 
current-on timing until the end of the weld process. Data 
augmentation was conducted only at training time and was 
designed to desensitize the model to various potential sit-
uations that could occur in a production system (e.g., elec-
tromagnetic interference, slight misreporting of current-on 
timing, gain and contrast variance, shift in A-scan gating, etc.). 
Thus, augmentation involved some typical image augmen-
tation steps such as random vertical shifts of both top and 
bottom image cropping positions prior to resizing vertically 
to 128 pixels, random horizontal shift of current-on (image 
left edge) position, addition of artificial noise, and random 
contrast adjustments. In addition, random horizontal resizing 
of M-scans to uniformly distributed randomly-selected widths 
from 75–400 pixels was conducted to desensitize the model to 
the weld timing distribution of the training data, with the aim 
of producing a more robust model such that it can correctly 
interpret data from welds having weld times vastly different 
from those typically observed in the training data. Key event 
timings and MNS curves were adjusted according to any aug-
mentations performed. Due to the random horizontal resizing, 
inputs and targets were zero-padded after the end of the 
sequence. 

Three models were trained using Monte-Carlo validation 
and evaluated on a held-out testing dataset. Of the 18 223 
labeled M-scan samples, 16 400 were used for training, 1640 for 
validation, and 1823 for testing. Each model was trained using 
the Adam optimizer (Kingma and Ba 2015) for 400 epochs with 

Figure 4. An unrolled schematic diagram of the ConvLSTM architecture 
used in this study. Data flow over depth of network is from bottom 
to top. Data flow over weld time is from left to right. Input A-scans 
(xt = 1…n) are fed to the network. ConvLSTM layer (1…k) states 
(denoted s; composed of C and H states observed in standard LSTMs) 
are initially zeros and modified over time given previous states and 
new inputs from previous layer. A max pooling operation follows 
each ConvLSTM. Outputs of the last ConvLSTM layer are fed into the 
time-distributed (i.e., shared across all time steps) fully connected 
decision-making layer (denoted FC in the figure). Input and output 
dimensionalities are depicted.
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a batch size of 32, with early stopping and learning rate reduc-
tion based on validation loss. Binary cross-entropy loss was 
used for the event outputs, while mean-squared error was used 
on the MNS regression output. Inputs and loss were masked 
such that models would skip the zero-vector A-scans during 
training and not backpropagate loss on those inputs; thus, the 
model did not learn from the zero-padded regions.

To evaluate performance, a number of different perfor-
mance indicators were used for each task. With respect to 
event detection, performance was evaluated using sensitivity 
with respect to the absolute error of ground truth versus model 
predictions of event timings from 0–30 ms, overall specific-
ity, and histograms of timing error for true positives. MNS 
regression performance was assessed using the percentage of 
A-scans that are correct within an absolute difference of 0.1.

Results
The results of the feasibility study and performance evaluation 
are discussed next. 

Feasibility Study
The feasibility study results (Table 1) demonstrated that archi-
tectures starting with eight filters in the first layer were feasible 
up to three layers (Figure 5a). The three-layer architecture with 
eight filters in the first layer had an inference time of 1.06 ms 
(SD = 0.13 ms), whereas a four-layer architecture had an infer-
ence time of 1.22 ms (SD = 0.14 ms). With 16 filters (Figure 5b), 
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T A B L E  1 

Summary of feasibility study results

Architecture (filters 
per ConvLSTM layer) Parameters Inference time (ms)

8 3461 0.866 (0.193)

8-16 8133 1.024 (0.155)

8-16-32 26 693 1.060 (0.129)

8-16-32-64 100 677 1.221 (0.142)

8-16-32-64-128 396 101 1.428 (0.155)

16 8453 0.952 (0.304)

16-32 27 013 0.954 (0.160)

16-32-64 100 997 1.085 (0.151)

16-32-64-128 396 421 1.344 (0.132)

16-32-64-128-256 1 577 093 1.992 (0.154)

32 23 045 0.999 (0.268)

32-64 97 029 0.970 (0.108)

32-64-128 392 453 1.264 (0.126)

32-64-128-256 1 573 125 1.942 (0.144)

32-64-128-256-512 6 293 765 4.271 (0.189)

Note: Mean inference time per A-scan over 2589 A-scans, standard 
deviation in parentheses
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Figure 5. Inference time per A-scan 
in milliseconds (orange line) and 
parameter count (blue dashed line) 
per architecture (X axis; 1–5 layers), 
with first layer number of filters: 
(a) 8; (b) 16; and (c) 32. Inference time 
generally grows superlinearly with 
respect to both number of layers and 
parameters. Means across all 2589 
A-scans are plotted with 1 standard 
deviation of mean shown with error 
bars. 
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a three-layer architecture was feasible with an inference time 
of 1.08 ms (SD = 0.15 ms), while a four-layer architecture 
was infeasible at 1.34 ms per A-scan (SD = 0.13 ms). Finally, 
with 32 filters (Figure 5c), architectures with up to two layers 
were feasible with 0.97 ms per A-scan (SD = 0.27 ms), while a 
three-layer architecture had an inference time of 1.26 ms (SD 
= 0.13 ms). In terms of parameter count, the largest feasible 
architecture was three layers with 16 filters in the first layer, 
yielding 100 997 parameters. Thus, this architecture was used 
for all subsequent experimentation.

Performance Evaluation
The architecture selected in the feasibility study demonstrated 
a very strong performance overall (Table 2). Within 10 ms of 
the event, the sensitivity of the four events ranged from 0.742 
(SD = 0.023) to 0.935 (SD = 0.005). Within 30 ms, sensitivity 
reached 0.977 for all events but saturation, which peaked at 
0.898 (SD = 0.009). Overall, specificity for expulsion events 
was highest at 0.986 (SD = 0.002), while the melting and SSID 
events had proportionally more false positives with specific-
ity of 0.807 (SD = 0.025) and 0.821 (SD = 0.031), respectively. 
Event detectability curves were similar for melting and SSID, 
while curves for expulsion and saturation differed greatly and 
models were consistent with respect to each event across all 
timing error windows (Figure 6). Expulsion detection reached 
an asymptote at approximately the 5 ms error window and 
melting and SSID reached an asymptote at approximately 
15 ms, while saturation reached an asymptote at approximately 
30 ms of absolute error.

Example distributions of timing error for melting (Figure 7a) 
and SSID (Figure 7b) events showed very symmetrical distri-
butions, centered at approximately zero with relatively mild 
variance. Saturation (Figure 7c), on the other hand, yielded a 
timing error distribution with slight negative skew and greater 
variance, and was centered slightly above zero. Expulsion timing 
error (Figure 7d) yielded an extremely tight distribution centered 
just above zero. All models yielded similar error distributions.

Model outputs plotted over time and compared against 
ground truth data (Figure 8) showed stability and smoothness 
on relatively clear M-scans, while output noise increased with 
decreasing M-scan quality. Overall, the models were insensitive 

to reasonable amounts of electromagnetic noise, weld time, 
stackup, and weld quality. Output curves for MNS were smooth 
and consistent with ground truth curves in terms of shape and 
position. In addition, welds without nugget formation (e.g., 
Figure 8a) were often correctly characterized. In general, welds 
with extremely late nugget formation (e.g., Figure 8b) were 
more difficult to characterize than those with earlier nugget 
formation (Figure 8c). 

Discussion
A fast and performant approach was developed for real-time 
interpretation of data from ultrasonic RSW process monitoring, 
with the aim of creating actionable feedback to a weld control-
ler using deep learning. 

All events were reliably detected; over 95% of events were 
detected within 18 ms of ground truth for all events except for 
saturation, which was detected at a rate of 90% within 30 ms. It 
was expected that expulsions would be most reliably detected 
as they appear very clearly on M-scans as a discontinuity in 
which the stack bottom boundary abruptly moves upward 

T A B L E  2 

Summary of performance results 

Melting SSID Saturation Expulsion

Sensitivity (within 10 ms) 0.870 (0.010) 0.886 (0.009) 0.742 (0.023) 0.935 (0.005)

Sensitivity (within 20 ms) 0.963 (0.006) 0.962 (0.007) 0.860 (0.014) 0.954 (0.006)

Sensitivity (within 30 ms) 0.984 (0.003) 0.979 (0.002) 0.898 (0.009) 0.977 (0.001)

Specificity 0.807 (0.025) 0.821 (0.031) 0.933 (0.018) 0.986 (0.002)

% A-scans correct (within 0.1) 90.5 (0.4)

Note: Mean sensitivity for each event within 10, 20, and 30 ms of event ground truth, mean specificity for each event, and mean accuracy of MNS within 0.1. 
Standard deviation in parentheses.

Figure 6. Event detection sensitivity per event given absolute error of 
model prediction of event timing versus ground truth event timestamp. 
Means across three models are plotted with 1 standard deviation of mean 
shown with error bars. Expulsion (purple line) was most easily detectable, 
SSID (orange line) and melting (green line) were similarly moderately 
detectable, and saturation (red line) was most difficult to detect.
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in the M-scan (Figure 8d). It was not expected, however, that 
they would be so rapidly detected with >90% of detections 
occurring within 4 ms of ground truth. Because they appear 
so clearly in M-scans, they are also the easiest event to label 
during dataset preparation. On the other hand, saturation is by 
far the most difficult event to label as the saturation point was 
defined as “the moment at which the molten nugget appeared 
to stop growing vertically,” which is highly subjective without 
perfect nugget and stack boundary annotations. Similarly, 
but less so, melting and SSID are not always as apparent 
as expulsions. Thus, from our experience in reading these 
images, and considering the relative difficulty for a human to 

interpret ultrasonic M-scans and identify these events and the 
relative consistency of event annotations, we found that the 
relative detection rates of the four events completely align with 
expectations.

Relatedly, as the ground truth labels for event timing as 
well as the top and bottom labels for the nugget and stack 
were used to develop the curves for MNS, the subjectivity and 
consistency of labels affects the performance of the models on 
the regression task as well. In particular, stack boundaries are 
almost always reasonably visible aside from after expulsions, 
while nugget boundaries vary in visibility based on nugget pool 
size, stage of weld, and stack geometry. With the investigated 
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approach, continuous feedback could be provided to an 
adaptive weld controller using the regression output of MNS, 
or other discrete events could be derived from it. In either case, 
optimal use of MNS output in a production implementation 
would likely require calibration welds for novel weld type (given, 
for example, sheet thicknesses, sheet materials, etc.) to deter-
mine an appropriate threshold or target value for MNS output. 
In future work, this ultrasound-based approach with AI-driven 
feedback will be rigorously compared against alternative 
feedback approaches (e.g., resistance-based feedback, etc.).

With respect to this AI-based approach, a more rigorous 
optimization of hyperparameters within the feasible space 
of architectures may yield better performance. In this study, 
the largest model possible (in terms of parameter count) was 
used based on feasibility study results; however, it is possible 
that better performance may be achieved by using various 
popular modules in the network (if feasible), for example, skip 
connections (He et al. 2016; Ronneberger et al. 2015), atrous 
spatial pyramid pooling (Chen et al. 2018), batch normaliza-
tion (Ioffe and Szegedy 2015), attention mechanisms such as 
convolution block attention module (Woo et al. 2018), and so 
forth. Alternatively, other novel architectures, such as vision 
transformer (Liu et al. 2021), could be explored in future work. 
In addition, providing known welding parameters to the model 
as inputs (such as sheet thicknesses, sheet material encodings, 
force, welding cap face diameter, etc.) is another potential 
opportunity for improvement, which can be investigated in the 
future. 

Precise and continuous annotations, for both the nugget 
and stack, at all times throughout the weld would be ideal in 
order to derive event timestamps and MNS curves. From the 
standpoint of dataset development, this would essentially be 
the same as labeling the M-scans for semantic segmentation 
of the nugget and stack boundaries, which is significantly 
more tedious and laborious than the proposed approach, and 
still subjective (though, perhaps less subjective as it is less 
abstract). One advantage of the proposed approach is that it 
required, at most, eight clicks per annotated M-scan (each of 
the four event timings, two nugget labels, two stack labels) 
during data annotation, whereas semantic segmentation 
would conservatively require 20 clicks per segmented region 
to delineate each polygon—40 clicks in total between nugget 
and stack regions—so the proposed approach yielded a five-
fold reduction in data preparation time. That said, semantic 
segmentation of the ultrasonic data is still a natural next step 
for this work like in the case of Guo et al. (2023). Other works 
have demonstrated the potential for semantic segmentation 
in real-time ultrasonic inspection in both NDE and medical 
contexts (Fiorito et al. 2018; Hu et al. 2022; Shandiz and Tóth 
2022). If it were found to be performant, generalizable, and still 
sufficiently fast for adaptive RSW (i.e., <1 ms per A-scan infer-
ence time in a production environment), semantic segmenta-
tion could yield more precise and continuous measurements, 
and consequently better feedback. This would be especially 
valuable if continuous feedback to an adaptive weld controller 

was preferred over discrete feedback, or perhaps necessitated 
for a particular adaptive welding algorithm. 

Conclusion
The investigated approach is not limited to ultrasonic NDE 
nor resistance spot welding; such an approach could be 
applied to the interpretation of NDE data from a variety of 
other modalities for a variety of other joining methodologies. 
In all, the investigated approach is an exciting first step toward 
real-time interpretation of ultrasonic NDE data from RSW. It 
demonstrates the enormous potential of ultrasound-based 
process monitoring backed by real-time interpretation using 
deep learning, for real-time adaptive feedback systems in 
modern manufacturing. Such NDE 4.0 systems are integral 
to Industry 4.0 and the ZDM paradigm, and this work brings 
zero-defect RSW closer to reality.
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A BS TR AC T

This paper presents a novel data-driven approach to 
localize two types of acoustic emission sources in an 
aluminum plate, namely a Hsu-Nielsen source, which 
simulates a crack-like source, and steel ball impacts 
of varying diameters acting as the impact source. 
While deep neural networks have shown promise in 
previous studies, achieving high accuracy requires a 
large amount of training data, which may not always 
be feasible. To address this challenge, we investigated 
the applicability of transfer learning to address the 
issue of limited training data. Our approach involves 
transferring knowledge learned from numerical 
modeling to the experimental domain to localize nine 
different source locations. In the process, we evaluated 
six deep learning architectures using tenfold cross-
validation and demonstrated the potential of transfer 
learning for efficient acoustic emission source 
localization, even with limited experimental data. This 
study contributes to the growing demand for running 
deep learning models with limited capacity and 
training time and highlights the promise of transfer 
learning methods such as fine-tuning pretrained 
models on large semi-related datasets. 

KEYWORDS: acoustic emission, deep neural network, finite 
element modeling, transfer learning, fiber optics, source 
localization

Introduction
Acoustic emission source localization is crucial in struc-
tural health monitoring (SHM) and proactive maintenance 
of metallic structures. The constraints in deploying acoustic 
emission testing (AE) sensor arrays in real-world structures 
necessitate a shift toward intelligent, automated single-sensor 
approaches. Holford et al. (2001) pioneered the application of 
AE for damage location in steel bridges, establishing its impor-
tance in SHM. Ebrahimkhanlou and Salamone (2017) further 
examined acoustic source localization and its significance in 
determining the origin of acoustic emission waves and assess-
ing damage severity. Cheng et al. (2021) developed an acoustic 
emission source localization method using Lamb wave propa-
gation simulation and artificial neural networks, proving effec-
tive in I-shaped steel girder inspections. Ai et al. (2021) studied 
source localization on large-scale canisters used for nuclear 
fuel storage, addressing the need for optimal AE sensor deploy-
ment. Ciampa and Meo (2010) proposed an approach using 
wavelet analysis and a Newton-based optimization technique 
for acoustic emission source localization and velocity determi-
nation, contributing to the broader understanding of acoustic 
emission wave propagation and source detection.

Significant progress has been achieved in acoustic emission 
source localization through the application of deep learning, 
demonstrating its promise in localizing acoustic emission 
signals (LeCun et al. 2015). Ebrahimkhanlou and Salamone 
(2018) proposed a deep learning approach for localizing 
acoustic emission sources using a single sensor in plate-like 
structures. This was further advanced by Ebrahimkhanlou et 
al. (2019), who introduced a deep learning–based framework 
for localizing and characterizing acoustic emission sources 
in metallic panels using only one sensor. Garrett et al. (2022) 
utilized artificial intelligence for estimating fatigue crack length 
from acoustic emission waves, a significant step forward in 
damage localization and quantification. Despite the challenge 
of false positives, the fusion of artificial intelligence and AE 
holds promising opportunities for enhancing SHM (Verstrynge 
et al. 2021; Hassan et al. 2021).

A key challenge in using supervised learning algorithms 
for acoustic emission source localization is the difficulty in 
accessing labeled acoustic emission signals for existing struc-
tures. Transfer learning is a strategy that assists the super-
vised learning task when available training data is limited 
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(Agarwal et al. 2021). Various studies have demonstrated the 
value of transfer learning in enhancing neural networks for 
acoustic emission source localization and SHM, such as Chen 
et al. (2021), who proposed an acoustic-homologous transfer 
learning approach for rail condition evaluation, and Hasan et 
al. (2019), who utilized transfer learning for reliable bearing 
fault diagnosis under variable speed conditions.

Deep learning and transfer learning methods have shown 
great potential in improving acoustic emission source local-
ization efficiency (Sun 2020; Bengio 2012). Ismail-Fawaz et 
al. (2022) presented a deep learning approach for time series 
classification using hand-crafted convolution filters, further 
enhancing AE capabilities. Ismail Fawaz et al. (2018) explored 
transfer learning for time series classification, while Zhang 
et al. (2017) studied the learnability of fully connected neural 
networks. Weiss et al. (2016) provided a survey of transfer 
learning, and Bengio (2012) emphasized the importance of 
deep learning representations for unsupervised and transfer 
learning. Though significant advancements have been made 
in applying deep learning and transfer learning to acoustic 
emission source localization, continued development and opti-
mization of these methodologies are essential for addressing 
inherent challenges and maximizing their potential in SHM 
(Bengio 2012; Sun 2020).

In this study, our principal innovation lies in the success-
ful implementation of transfer learning through the pretrain-
ing of six deep learning models on a large simulated acoustic 
emission dataset. This enabled the localization of acoustic 
emission sources using a single sensor. We pretrained con-
volutional neural network (CNN), fully convolutional neural 
network (FCNN), Encoder, ResNet, Inception, and Multi-layer 
Perceptron (MLP) models using data from finite element 
method (FEM) simulations of acoustic emission impulses. 
Through transfer learning, we fine-tuned the pretrained 
models on the experimental dataset, improving their perfor-
mance while reducing the number of experiments needed. 
Our results show that the pretrained models generalized well 
to variations in acoustic emission signals and could be applied 
to different model architectures and datasets. Overall, our 
research highlights the potential of deep learning techniques, 
particularly transfer learning, for improving the accuracy and 
efficiency of acoustic emission source localization. These 
findings can significantly benefit the development of reliable 
and cost-effective SHM strategies and are readily applicable to 
other nondestructive evaluation problems.

This paper is organized into four main sections. The first 
section provides an overview of the laboratory experiments 
conducted utilizing pencil lead break (PLB) and impact tests 
at nine distinct positions. In the next section, to aid under-
standing, data visualization is furnished through raw waveform 
plots of both simulated and real-life experimental data derived 
from impact and PLB testing. Additionally, a 2D t-SNE plot is 
provided to better illustrate the clustering structure of signals 
originating from nine distinct locations or classes. The third 
section introduces six distinct deep learning models, including 

our own, which were designed through the iterative fine-tuning 
of layers with unique training parameters. The architectural 
details of both the classifier and the transfer elements of 
our model are thoroughly analyzed in this section. The final 
section presents the results obtained by training these fine-
tuned models using tenfold cross-validation. To give a compre-
hensive view of the models’ performance, the mean loss and 
range of loss for each classifier, as well as for the impact and 
PLB tests, are plotted. The efficacy of each fine-tuned model is 
further evaluated by computing and representing key metrics 
such as precision, recall, and accuracy in a box plot format.

Methods and Experiments
The primary objective of the conducted experiments was to 
scrutinize the effectiveness of the suggested source localization 
techniques, utilizing a singular AE sensor, on an aluminum 
plate. As represented in Figure 1, the experimental setup com-
prised a sensor, constituted by two frail fiber Bragg gratings 
(FBGs), forming a low-finesse Fabry-Perot interferometer (FPI) 
on a coiled single-mode fiber. This arrangement facilitated the 
detection of ultrasound on a solid surface. The setup employed 
a narrow-linewidth diode laser with wavelength tunability, 
designed to direct light toward the FBG-FPI sensor via a circu-
lator developed in Karim et al. (2021).

Before reaching the sensor, the light was passed through a 
three-paddle polarization controller, which facilitated manual 
adjustments to the laser polarization. The light reflected from 
the sensor was then directed to a photodetector (PD) through 
the same circulator. To obtain acoustic emission signals of 
higher quality, the output from the PD was amplified and 
filtered using a 50–500 kHz band-pass filter. Additionally, noise 
removal techniques, such as adaptive filtering, were employed 
to reduce any extraneous signals present during data collec-
tion. It is selected based on its ability to effectively remove 
noise while preserving the signal of interest. The filtered and 
noise-free AE signals were subsequently utilized to train and 
test the deep learning models for source localization.

Acoustic emission is a physical occurrence linked to stress 
waves, initiated by the abrupt liberation of elastic energy during 
the formation of cracks or damages within materials. AE signals 
can be captured and logged by attaching AE sensors to the 
sample surface. The AE monitoring process involves the collec-
tion and analysis of these signals to assess the condition of the 
object under study. The Hsu-Nielsen PLB test, a widely accepted 
artificial method for acoustic emission signal generation (Sause 
2011), was used in this study. It involves breaking pencil leads 
on a surface with an affixed AE sensor. For this study, PLB tests 
were conducted on a 2.54 mm thick aluminum plate measuring 
0.30 × 0.30 m. The plate was partitioned into nine distinct loca-
tions as delineated in Figure 2. Each of the nine representative 
points, denoted by a red dot, underwent the PLB test 10 times, 
using a 2H mechanical pencil with a 0.5 mm diameter lead.

Furthermore, impact-like signals were gathered by 
dropping steel balls (4.7 mm diameter) from a height of 25 mm 
at the same AE sensor location illustrated in Figure 2. The 
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equipment and settings for this experiment mirrored those 
utilized for the PLB tests. The recorded signals were distin-
guished and examined for acoustic emission source identifi-
cation and localization, using these procedures. The experi-
mental setup facilitated the collection of precise and accurate 
data, thereby enabling the evaluation of the proposed method’s 
efficacy in acoustic emission source localization.

Numerical Modeling Assisted Data Augmentation
This study utilizes a 3D computational model for the test 
specimen to enable an enhanced characterization of acoustic 
emission impulses, as inspired by Cuadra et al. (2015). The 
approach hinges on the implementation of pretrained deep 
learning models, which harness data from FEM-simulated 

acoustic emission impulses derived from impact-type and 
PLB tests (Hamstad 2007). The creation of pretraining data via 
these simulated AE signals propels advancements in acoustic 
emission source localization within the specimen. This 
model offers several benefits, such as reducing computational 
demands and enhancing the performance of AE monitoring 
systems in real-world scenarios. The accurate characterization 
of acoustic emission impulses is a vital prerequisite for devel-
oping effective signal-processing algorithms. Our proposal 
presents a robust methodology to pretrain deep learning 
models using data procured from acoustic emission impulse 
simulations. The PLB source was strategically positioned in the 
out-of-plane direction at a predefined location on the plate, 
with the sensor situated an inch from the right and upper 
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Figure 1. Schematic 
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Figure 2. Experimental setup for acoustic emission monitoring: (a) pencil lead break (PLB) and (b) impact tests conducted on an aluminum plate 
(c) that is segregated into nine identified zones. This setup assists the localization of acoustic emission sources.
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edges of the plate, respectively. Utilizing FEM simulations, 
we generated waveforms from nine distinct locations similar 
to the experimental setup shown in Figure 2. Simulating AE 
signals via FEM allows us to generate pretraining data for 
deep learning models, thereby enabling a more accurate and 
efficient localization of acoustic emission sources within the 
specimen. These simulated signals furnish an effective means 
to pretrain deep learning models for AE signal processing algo-
rithms, consequently bolstering the accuracy and effectiveness 
of these algorithms in real-world contexts. For the PLB test, the 
excitation signal,   F  1   (t)  , simulates the response of an aluminum 
plate to mechanical loading and is defined as follows:

  F  1   (t)  =  
{

  
− 2t /  t  1  ,  0 < x <  t  1  

   − cos (π [t −  t  1  ] )  − 1,  t  1   < x <  t  2     
0,  t  2   < x

    

The function was selected due to its ability to elicit a gradual 
increase in the excitation signal. Here,   t  1    and   t  2    are time inter-
vals that define specific stages of the excitation signal.   t  1    sig-
nifies the duration over which the excitation signal increases 
gradually, while   t  2    denotes the time after which the signal 
ceases. This particular function was chosen as it prompts a 
gradual increase in the excitation signal, thus adequately repre-
senting the mechanical loading process. For the impact test,   F  2   
(t)   is represented as:

  F  2   (t)  = C  e   −γt/ t  0    sin (  4π _ 
1 +   t  0   _ t  

  )  

where
C is the initial amplitude of the excitation signal, 
γ is the damping factor, 
  t  0    is the characteristic time of the excitation signal, and 
t is time. 

This function, representing a damped sinusoidal wave, is a 
common signal observed in impact tests and serves to simulate 
the material response to mechanical loading. The shape of the   
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Figure 3. Simulation setup with analytical functions: (a) excitation signal to simulate PLB test; (b) excitation signal to simulate impact test.

T A B L E  1 

Parameters for simulation

Parameters Values

Young’s modulus 206 GPa

Poisson’s ratio 0.3

Density 2710 kg/m3

t0 5 μs

t1 6.5 μs

t2 7.5 μs

Decay rate γ 1.85
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F  1   (t)   and   F  2   (t)   is shown in Figure 3 and specifications of these 
parameters are shown in Table 1.

Figure 4 showcases the signals derived from the impact 
and PLB tests and their corresponding simulation signals. We 
present these waveforms to emphasize the clear correlations 
and dissimilarities between test and simulation data; such 

contrasts highlight the feasibility of employing deep learning 
models in acoustic emission source localization. The duration 
of these signals is distinct for the tests and simulations; the 
test signals span a duration of 250 μs, while the simulation 
signals extend over a period of 100 μs. This discrepancy is a 
consequence of the methods employed to gather sufficient 
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Figure 4. Signals obtained from: (a) impact test; (b) PLB test; (c) impact simulation; and (d) PLB simulation. The raw signal is denoted in blue, while 
the red line signifies the average waveform.
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data from finite element modeling. We deployed a point 
domain network consisting of a 5 × 5 grid of sensing locations 
to gather the simulation data, which increases the complexity 
of the surrounding mesh, substantially slowing the collection 
of the reverberation pattern (reflected signals after 100 μs). 
As such, for practicality and computational efficiency, we 
limited the simulation data collection to the initial 100 μs. The 
simulation was conducted using a workstation equipped with 
a 3.1 GHz multi-core processor and a 4 GB dedicated graphics 
card. On average, each round consumed approximately 
40 min. To gather an adequate volume of source domain 
data (simulation dataset), a data augmentation process was 
executed, resulting in the accumulation of 900 waveforms. 
It is noteworthy that differences in the reflection and trigger 
mechanisms between simulations and experiments, as observ-
able in the figures, stem from variations in the interaction with 
adjacent substrates and boundary conditions, resulting in 
distinct reverberation patterns. Furthermore, while the simula-
tion model logs the accurate time of arrival, the experimental 
process depends on manual trigger thresholding.

t-SNE is a powerful technique for visualizing 
high-dimensional data by mapping each data point to a 
two- or three-dimensional space. While t-SNE was originally 
designed for static data, it has been adapted for use with 
time series data in some cases. Visualizing AE data can be 
challenging due to its complexity and high dimensionality. 
However, t-SNE can be used to map time series data onto 
a low-dimensional space while preserving its underlying 
structure. To apply t-SNE to time series data, we first need to 
transform the sequential nature of the data into a set of fixed-
length feature vectors that can be used as input to t-SNE. This 
can be done using various techniques such as sliding windows 
or feature extraction methods like Fourier transforms or 
wavelet transforms. Once we have transformed the time series 
data into feature vectors, we can compute pairwise similarities 
between them using a Gaussian kernel:

  p  I,j   =   
exp ( 

−   | | x  i   –  x  j  | |    2 
 _ 

2  σ   2 
  ) 
  ________________  

 ∑ k    ∑ l   exp ( −   | | x  k   –  x  l  | |    2  _ 
2  σ   2 

  )   
   

where 
  x  i    and   x  j    are two feature vectors, 
sigma is a parameter that controls the width of the Gaussian 

kernel, and 
  p  I,j    is the probability that   x  i    would pick   x  j    as its neighbor if 

neighbors were picked in proportion to their probability 
density under a Gaussian centered at   x  i   . 

Next, we compute pairwise similarities between points in 
the low-dimensional map using a Student-t distribution: 

  q  i,j   =   
  (1 +   | | y  i   −  y  j  | |    2 )    −1 

  __________________  
 ∑ k    ∑ l     (1 +   | | y  k   −  y  l  | |    2 )    −1   

   

where 
  y  i    and   y  j    are two points in the low-dimensional map, and 
  q  i,j    is the probability that   y  i    would pick   y  j    as its neighbor if 

neighbors were picked uniformly at random from all other 
points. 

Finally, t-SNE minimizes the difference between these two 
distributions using gradient descent on a cost function that 
measures their divergence: 

 KL (P ‖Q )  =  ∑ 
i
    ∑ 

j
    p  i,j   log  

 p  i,j   _  q  i,j      

We’ve employed this t-SNE technique to enhance our 
understanding of the relationship between our simulation 
and experimental datasets. Two-dimensional plots generated 
by this method, as depicted in Figure 5, showing the similar-
ities between AE signals collected from nine distinct zones. 
Figures 5a and 5b demonstrate that the experimental data from 
both the impact and PLB tests exhibit larger variability and less 
distinct clustering, suggesting more complexities and uncer-
tainties in real-world scenarios. On the other hand, Figures 5c 
and 5d illustrate that the simulation data from both tests have 
a clearer clustering effect, indicating the advantages of using 
controlled and predictable simulation data for improving AE 
source localization techniques. Nevertheless, it’s important to 
recall that the simulation data might not encapsulate all the 
complexities and variations inherent in real-world scenarios. 
Therefore, further optimization of our proposed source local-
ization techniques is necessary to incorporate more uncer-
tainty factors, ensuring effectiveness across diverse real-world 
applications.

Deep Transfer Learning for Knowledge Transfer
This study investigates the effective application of transfer 
learning to new data, leveraging the insights obtained from 
pretrained models. A variety of deep learning models, includ-
ing convolutional neural network (CNN), fully connected 
neural network (FCNN), Encoder, Residual Network (ResNet), 
Inception, and Multi-Layer Perceptron (MLP), were assessed 
for their ability to analyze simulated datasets and to extract 
underlying features using a layer-wise fine-tuning strategy. The 
employed methodology entailed signal acquisition from the 
simulated datasets, followed by data preprocessing, feature 
extraction via fine-tuned deep learning models, and finally 
classification based on acoustic emission source location. To 
scrutinize impact and PLB test simulations, six deep learning 
models with distinct architectures and capabilities were inves-
tigated. This innovative strategy leads to a broader compre-
hension of the data, permitting the recognition of overlooked 
patterns and features when using a singular model. Detailed 
summaries of the architectures used for the networks men-
tioned are as follows:
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 Ñ CNN implements two convolutional blocks with 1D 
convolutions, instance normalization, and dropout. Each 
block comprises a Conv1D layer, succeeded by instance 
normalization, dropout, and max pooling. Hierarchical 
features are extracted from the input time series by the 
convolutional blocks. These features are then flattened and 
transmitted to a SoftMax classifier. The CNN model employs 
“categorical_crossentropy” loss and Adam optimizer 
(Simonyan and Zisserman 2014).

 Ñ FCNN resembles the CNN architecture but replaces 
max pooling with global average pooling to minimize 
spatial information loss. The global average pooling layer 
compacts the spatial information into a 1D vector, with these 
compressed features then passed to the SoftMax classifier 
(Zhang et al. 2017).

 Ñ ResNet uses residual blocks to circumvent the vanishing 
gradient issue. Residual blocks add the input directly to the 
stacked convolutional layers, enabling direct gradient flow. It 
uses batch normalization and weight regularization (L2 regu-
larization). Each residual block comprises two Conv1D layers 
followed by batch normalization and activation, with the 

output of the residual blocks average pooled and transmitted 
to the SoftMax classifier size (He et al. 2015).

 Ñ Encoder resembles CNN’s convolutional blocks but employs 
Parametric Rectified Linear Unit (PReLU) activation and 
instance normalization. After the convolutional blocks, an 
attention mechanism is applied. This attention layer assigns 
weights to the feature maps, focusing on pertinent features. 
The attended features are flattened and passed to the 
SoftMax classifier extraction (Vincent et al. 2008).

 ÑMLP substitutes the convolutional layers with dense 
layers for time series classification. The input time series 
is flattened and sent to the dense layers. It uses two dense 
layers with dropout for regularization. The output dense 
layer utilizes SoftMax activation for the classification 
(Delashmit and Manry 2005).

 Ñ Inception utilizes an inception module with parallel branches 
of 1 × 1, 3 × 3, and 5 × 5 convolutions and max pooling. The 
outputs of the parallel branches are concatenated, forming 
the inception module. It employs batch normalization and the 
dropout post inception module. The features are flattened and 
transmitted to the SoftMax classifier (Zhang et al. 2022).
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Figure 5. The two-dimensional t-SNE plot for: (a) impact test dataset; (b) PLB test dataset; (c) impact simulation dataset; and (d) PLB simulation 
dataset.
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Our research employs transfer learning, a technique 
capable of enhancing the performance of deep neural 
networks across various tasks. We illustrate its efficacy by 
applying it to improve the performance of deep neural 
networks in acoustic emission source localization. AE is a 
nondestructive testing method that leverages sound waves to 
identify and analyze material defects, and acoustic emission 
source localization pertains to the determination of the origin 
of the acoustic emission signals. We initialized our process 
by pretraining a deep neural network on a large simulation 
dataset, allowing the network to capture the general features 
of AE signals. Following this, we fine-tuned the deep neural 
network on a smaller experimental dataset, a process that 
facilitated the network’s learning of specific features present 
in the experimental data. Our process involves first trans-
ferring layers from a pretrained model, and subsequently 
freezing their parameters. As new AE data is processed, it 
passes through these frozen layers before progressing through 
the trainable layers, allowing us to localize the acoustic 
emission source. Owing to the intrinsic connection between 
simulation and experimental data, the feature extractor can 
be applied to the latter, incorporating it as a nonadjustable 
layer in our model. We designate the high-level features 
extracted from these layers as “bottleneck” features due to 
their high level of condensation and their position at the 
classifiers’ preceding constriction point (as illustrated in 
Figure 6). The applied deep learning architecture comprises 
one of six classifiers, each consisting of multiple fully con-
nected layers following global pooling. This design enables 
nonlinear mapping of bottleneck features to AE source local-
ization. Additionally, a fusion layer is utilized to amalgamate 
extracted features, and an extra layer is employed to link bot-
tleneck features to location predictions. During fine-tuning, 
the pretrained model’s weights serve as the initial values, 
and the model undergoes further training with available 
target domain data. As a consequence, the fine-tuned model 
can acclimatize to the target domain’s unique characteris-
tics, offering superior performance to a model trained from 
scratch. 

Results and Discussion
In this section, we compare the performance of various deep 
learning models with and without transfer learning applied 
to acoustic emission source localization tasks. We analyze the 
mean loss and loss range over 200 epochs for CNN, FCNN, 
Encoder, ResNet, MLP, and Inception architectures. These 
models were trained on two different datasets, namely the 
impact dataset and the PLB dataset, which both contain 
distinct acoustic emission source localizations. In the first 
scenario, we trained CNN models without transfer learning 
directly on the experimental dataset. Both models exhibit a 
similar pattern over the epochs, initially having high loss values 
and gradually improving to achieve a significant reduction in 
loss. However, the validation loss does not decrease as substan-
tially, which may indicate overfitting. In this case, the models 
have learned the training data too well but struggle to general-
ize on new, unseen data. In contrast, for the second scenario, 
we employed transfer learning, where the CNN models were 
first pretrained on a large, simulated dataset before being fine-
tuned on the experimental dataset. Both models begin with 
lower loss values than those without transfer learning, which 
could be attributed to the initial learning from the simulated 
dataset. Over 200 epochs, these models improve significantly. 
One model achieves a very low validation loss, suggesting 
excellent generalization capability, while the other model 
has a slightly higher validation loss. The performance of the 
other models, such as FCNN, Encoder, MLP, Inception, and 
ResNet, are also compared with and without transfer learning. 
Some models, such as the Encoder and MLP, exhibit signifi-
cant improvements when transfer learning is applied, while 
others show minor or negligible differences. Interestingly, the 
ResNet model demonstrates good performance on both the 
impact and PLB datasets, with and without transfer learning, 
though it experiences more fluctuations in the loss curve 
without transfer learning. Figures 7, 8, and 9 illustrate the mean 
loss and loss range for each model with and without transfer 
learning on the impact and PLB datasets. These visualizations 
provide a clear comparison of the models’ performances, high-
lighting the advantages of transfer learning in various cases. In 
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78 M A T E R I A L S  E V A L U A T I O N  • J U L Y  2 0 2 3

2307 ME July dup.indd   782307 ME July dup.indd   78 6/19/23   3:41 PM6/19/23   3:41 PM

ASNT grants non-exclusive, non-transferable license of this material to  .
All rights reserved. © ASNT 2024. To report unauthorized use, contact: customersupport@asnt.org



summary, our findings suggest that transfer learning can sig-
nificantly enhance the performance of deep neural networks 
on acoustic emission source localization tasks, particularly 
when high-quality training data is scarce. It highlights the 
utility of leveraging preexisting knowledge to expedite learning 
and bolster the model’s ability to generalize. However, not 
all models benefited from transfer learning. The Inception 
model’s performance was affected slightly, possibly due to 

the complexities inherent in its architecture. Intriguingly, the 
FCNN model performed better without transfer learning, 
indicating that its architecture might be more suited to direct 
learning from the training data. This observation underscores 
the need to consider the specificities of each model when 
applying transfer learning.

The presented study evaluates the performance on the 
test dataset. Our discussion is supplemented with statistical 
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Figure 7. Comparative 
analysis of mean loss and 
range with and without the 
implementation of transfer 
learning for: (a) CNN model 
applied to the impact test 
dataset; (b) CNN model 
applied to the PLB test 
dataset; (c) FCNN model 
applied to the impact test 
dataset; and (d) FCNN model 
applied to the PLB test 
dataset.
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metrics such as the minimum (the smallest value in the 
dataset), maximum (the largest value), median (the middle 
value when arranged in increasing order), first quartile (Q1: 
the middle value between the minimum and the median), 
and third quartile (Q3: the middle value between the median 
and the maximum). Analyzing the box plot as illustrated 
in Figures 10 and 11, we have added a few things to reduce 
overfitting: 

 Ñ Early stopping: By stopping training if validation loss does not 
improve for 20 epochs, we prevent the model from overfitting 
to the training data. If the validation loss is no longer improving, 
continued training is unlikely to generalize better to new data. 

 Ñ Restore best weights: By restoring weights from the epoch 
with the best validation loss, we “roll back” the model to the 
point before overfitting started to occur. This gives us the 
model that generalizes best to new data.  
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Figure 8. Comparative 
analysis of mean loss and 
range with and without the 
implementation of transfer 
learning for: (a) Encoder 
model applied to the impact 
test dataset; (b) Encoder 
model applied to the PLB 
test dataset; (c) MLP model 
applied to the impact test 
dataset; and (d) MLP model 
applied to the PLB test 
dataset.
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 Ñ Patience: The patience value of 20 epochs means we are 
willing to tolerate a fair number of epochs without improve-
ment before stopping training. This avoids stopping too early 
and allows temporary plateaus in validation loss, but ulti-
mately stops before severe overfitting occurs. 

In the Impact dataset, the CNN and MLP models, with 
and without transfer learning, achieved comparative perfor-
mance in terms of accuracy, precision, and recall, with slight 

enhancements observed in models using transfer learning. 
Conversely, FCNN underperformed, showing negligible 
improvement from transfer learning; unlike CNN and MLP, 
which recorded accuracies above 0.8, FCNN yielded a mere 0.2. 
Transfer learning substantially increased ResNet’s performance 
variance regarding recall, precision, and accuracy. Inception 
showed a similar trend to CNN and MLP, where transfer 
learning resulted in minor enhancements. The Encoder model 
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Figure 9. Comparative 
analysis of mean loss and 
range with and without the 
implementation of transfer 
learning for: (a) Inception 
model applied to the impact 
test dataset; (b) Inception 
model applied to the PLB 
test dataset; (c) ResNet 
model applied to the impact 
test dataset; and (d) ResNet 
model applied to the PLB 
test dataset.
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showed minimal variation in performance; precision was 
slightly higher without transfer learning, while recall remained 
unchanged. Accuracy was slightly improved with transfer 
learning.

As for the PLB dataset, the CNN and MLP with transfer 
learning slightly outperformed their counterparts without 
transfer learning. FCNN underperformed with an accuracy 
of less than 0.1, while transfer learning further deteriorated 
its performance. Again, ResNet showed significant improve-
ment through transfer learning. Unlike the Impact dataset, 
Inception with transfer learning showed slightly worse perfor-
mance compared to without transfer learning. Encoder, similar 
to CNN and MLP, had slightly higher precision, recall, and 
accuracy with transfer learning.

The observations from this study can be explained by the 
fundamental advantage of transfer learning, which can be 
explained by the reusability of the learned features. Models 
without transfer learning, though adept at discriminative 
patterns from training data, face difficulties in generalizing 
to unfamiliar data. This process often results in memorizing 
training data rather than assimilating generalizable patterns, 
thereby leading to elevated validation losses. On the contrary, 
models employing transfer learning derive initial benefits from 
patterns and features harvested from an extensive simulated 
dataset. These models exhibit reduced initial loss values, indi-
cating that the simulated dataset provides a beneficial starting 
framework for interpreting the limited experimental data. 
Furthermore, fine-tuning allowed these models to adapt to the 
specific characteristics of the experimental data, resulting in 
significant improvement over epochs and better generalization 
capabilities. The distinct performance outcomes of different 
models, as illustrated by statistical metrics and visualizations, 
underscore the crucial role of model architecture in harnessing 
the effectiveness of transfer learning.

Conclusions
This paper proposes a novel data-driven approach to accu-
rately localize two types of acoustic emission sources in an 
aluminum plate using six deep learning models: CNN, MLP, 
FCNN, Inception, ResNet, and Encoder. The models incorpo-
rate deep transfer learning techniques to enhance their effec-
tiveness in identifying the source of acoustic emission signals. 
The deep learning models were trained and evaluated using 
simulations of impact and PLB tests with a distributed sensor 
array designed to maximize information acquisition from 
the simulations. The results demonstrate the efficacy of deep 
neural networks with transfer learning in mapping acoustic 
emission waveforms to their sources and uncovering valuable 
insights from the simulations. However, this study’s limitation 
is the inability to identify the exact coordinates of the sources 
of the acoustic emissions. Future research should optimize 
the deep neural networks using larger training datasets and 
explore automated solutions like numerical simulations or 
robotic solutions to address this limitation. Additionally, while 
in this study Hsu-Nielsen tests were used to simulate fatigue 

cracks, further research should conduct more formal tests on 
actual propagating cracks to verify the performance of the 
proposed deep learning approaches under real states of stress. 
These efforts could lead to the development of more robust 
and accurate deep learning models for acoustic emission 
source localization in real-world applications.
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A MESSAGE FROM YOUR 
OUTGOING PRESIDENT
I would like to take this occasion to say, thank you! It has been an honor and 
privilege to serve as our Society’s 81st President from July 2022 to June 
2023. It was a rewarding experience to have the opportunity to work with 
such a dedicated staff and an extremely professional and effective Board of 
Directors (BOD) as we together guided our Society through some very trying 
times. I am so looking forward to taking on the new challenge of serving as 
Chairperson of the Board beginning in July 2023 as the BOD, including the 
five new directors just recently elected (see page 88), will continue to strive 
to make our Society stronger and provide even more opportunities for our 
members.

Over the past year, we have expanded our portfolio of benefits by 
acquiring NDT Classroom and we will be further developing those online 
training courses to fit the needs of our Level I and Level II members (and 
nonmembers, for that matter). We have successfully administered over 
1200+ UT Thickness (UTT) performance verification examinations through 
our highly successful Industry Sector Qualification (ISQ) performance 
demonstration program, rolled out the ISQ UT Shear Wave (UT-SW) exams, 
and are currently rolling out the ISQ UT Phased Array (UT-PA) exams as I 
write this note in early June. Watch for more on the ISQ program to come 
in the very near future. Through ASNT Certification Services LLC, a newly 
formed company that handles all the certification efforts within ASNT, we 
have finally released the new ASNT 9712 program. This will replace the old 
ACCP program and will be fully compliant with the latest ISO 9712 standard 
for the qualification and certification of NDT personnel. Additionally, we have 
introduced the EBC (employer-based certification) Audit Program wherein 
service companies can have their in-house SNT-TC-1A and/or CP-189 
programs audited by ASNT and receive an accreditation of full compliance 
for their program once the audit is completed. There is much more to come 
on this in the very near future that will benefit ASNT members as well.

I was extremely proud to be part of the opening of the new ASNT 
Houston training and testing facility, as well as the newly formed ASNT India 
Pvt. Ltd., part of our international expansion efforts. Both of these facilities will 
provide lower costs to our members while still producing revenue to grow 
the Society.

During my year-long tenure as President, I was fortunate to have the priv-
ilege to represent ASNT at leading NDT conferences around the world. I 
was asked to attend the British Institute of Non-Destructive Testing (BINDT) 
annual conference, where I gave a short speech and follow-up toast to their 
Society. I was honored to host, along with Chairperson of the Board John T. 
Iman and Vice President Dr. John Z. Chen, the US-Japan NDT Symposium, 
which is held every four years in Hawaii. I also represented ASNT at the Asia 
Pacific Conference for NDT in Melbourne, Australia. I was selected and voted 
in as the President of the next Asia Pacific Conference, which will be hosted 
by ASNT in Honolulu in 2026. Lastly, I was an invited lecturer at the 70th anni-
versary ceremonies of the Japanese Society for Non-Destructive Inspection 
in Tokyo, Japan—an event I will remember for a lifetime. I managed to make 
a few local section meetings (not as many as I had planned due to unfore-
seen issues): one being the Charlotte Section’s annual shrimp boil, as well as 
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one in the Kingdom of Saudi Arabia while I was there on an 
unrelated business trip. All in all, it has been a very busy and 
productive year for me.

During my speech at the 2022 Annual Conference in 
Nashville, I quoted two past US presidents who spoke of 
the rewards of service to others as well as how to over-
come difficult issues and learn from them. I can say that 
volunteering for ASNT and working with the other great 
volunteers of our Society over the past 40+ years has been 
extremely rewarding. Along the way we have experienced 
many bumps in the road; however, by working together 
we have overcome so many of the obstacles. I am certain 
that after the dust of the years to come has passed over 
our Society, we, too, will be remembered, not only for our 
accomplishments (victories or defeats), but for our contribu-
tion to the human spirit as volunteers.

In closing, thank you for allowing me to be your 81st 
President. Thank you to all the volunteers who donate their 

valuable time to assure our Society is the gold standard 
for the NDT community around the globe. Thank you to 
the staff at ASNT for their relentless support. Thank you to 
our executive director and the BOD for their guidance and 
leadership. I would also like to thank and acknowledge the 
Directors whose three-year terms on the BOD ended on 
30 June: Tsuchin (Phillip) Chu, Gerry Churchwell, Larry Gill, 
and Anish Poudel. Last but certainly not least, thank you 
to our outgoing Chairperson of the Board, Mr. John Iman. 
John has led our Society through uncharted waters over 
the past two years, kept us on track throughout the journey, 
and never wavered on his pursuit for enhanced workforce 
development programs, the formation of the new ASNT 
Foundation (for which he has been appointed President), 
and the aggressive but much needed Strategic Plan. It 
is people like Mr. Iman who make this Society and our 
industry great. We are truly a society of professionals that 
work daily to create a safer world.  
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On Monday, 17 April 2023, ballots were tallied and results were confirmed by 
ASNT’s election partner, Intelliscan Inc. The ASNT Leadership Development 
Committee is pleased to announce the following individuals will be taking their seat 
on the Board of Directors of the American Society for Nondestructive Testing, for 
three-year terms, beginning 1 July 2023. Read on to meet your new Directors! 

DAVID ALLEYNE
David Alleyne, PhD, is the CEO of Guided 
Ultrasonics Ltd. (GUL), a spin-out company 
from the Mechanical Engineering 
Department at Imperial College in 
London, UK. He co-founded the company 
in 1999 with products that were based on 
his foundational research. Since 1999, he 
has driven the adoption of guided wave 
testing (GW) technology globally to the 
point where it is now a significant and 
growing part of the NDT and structural 
health monitoring (SHM) market. GUL 
exports most of its products and services. 
Under Alleyne’s leadership, GUL has been 
pivotal in the creation of the GW method-
ology and industry codes and standards, 
as well as all levels of associated engi-
neering professional certifications.

Alleyne completed his PhD at Imperial 
College in 1991. His research was to gain 
understanding of how guided waves 
(Lamb wave) in plates could be used for 
NDT. After starting GUL with a colleague 
(Brian Pavlakovic, PhD), the two continued 
the development of innovative GW 
technologies using the torsional modes. 

Over the next 23 years, Alleyne led and 
directed development and commercial-
ization of transformational technologies 
for the global NDT industry. From 1999 
till 2015, he was the operations director 
with responsibility for developing training 
schemes and material for the NDT 
industry based around a practitioner- 
based syllabus for Levels I, II, and III. Since 
2015, Alleyne has led the company as 
CEO, devising strategies and business 
plans with the core objective to diversify 
the company’s technology base to include 
SHM and invent new application-directed 
tools for quantitative measurements (QSR). 
The new developments have also incor-
porated artificial intelligence via machine 
learning tools to aid inspectors’ training 
and technical expertise uptake. 

Alleyne is an acknowledged world 
leader in the industrial application of GW 
technology and has gained a wealth 
of invaluable experience from wide-
ranging collaborations with universities 
and industrial partners. This has resulted 
in an outward-facing approach that 
values talent with an emphasis placed on 
innovation via teamwork, respect, and 
customer service.

Alleyne also serves on the advi-
sory committee of a major UK charity 
(IntoUniversity) that works to assist and 
support young people through learning 
centers where they are inspired to achieve. 
Alleyne has also done committee work 
at ASNT and has been involved in many 
national and international code bodies, 
including ASTM, NACE, BSI, and ISO.
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KATHY FERGUSON
Kathy Ferguson is a materials engineer 
who has spent her career working in the 
field of NDT. Ferguson joined Boeing 
in 2008 where her broad background 
in NDT, failure analysis, and materials 
selection allowed her to support multiple 
airplane programs including the F-22, 
787, 737, 777X, P-8, and the 767 Tanker 
programs.  She has been a role model 
and mentor to students and colleagues 
in the field of NDT for her entire career. 
Ferguson has received numerous tech-
nical achievement awards, including a 
Boeing Meritorious Invention Award, and 
she currently holds five US patents in a 
variety of different technologies.

Ferguson has served continuously for 
13 years on the Board of Directors for the 
Pacific Northwest Section of ASNT.  She 
served as chair for three years, ensuring 
that the Section continued winning Gold 
recognition in the ASNT President’s 
Award program. During that time, she 
was honored for her years of mentoring 
women and students pursuing careers in 
NDT with the 2018 ASNT Advancement 
of Women in NDT Recognition and the 
2019 ASNT Mentoring Award. She has 
encouraged countless students with 
her message that NDT is the “Ultimate 
Superhero Career” because NDT saves 
lives before catastrophes strike and 
makes the world a safer place. She 
encourages every member to recognize 

the contributions that they have made 
in making the world a safer place. To 
that end, she has nominated numerous 
Pacific Northwest Section members 
resulting in them winning the following 
ASNT awards: Lou DiValerio Technician 
of the Year Award, Robert C. McMaster 
Gold Medal Award, three ASNT Fellow 
Awards, two Mentoring Awards, and 
the Advancement of Active Military and 
Veterans in NDT Recognition Award.

Ferguson launched a “Building 
Connections” initiative, which helps 
students to network with other ASNT 
section members and to advance their 
NDT careers. Ferguson mentors high 
school and college students by making 
STEM presentations about NDT and orga-
nizes student tours of aerospace compa-
nies in the Seattle area. She served on 
the 2013, 2015, 2017, and 2019 Program 
Committee for the Pacific Northwest 
Section NDT of Composites Conference.

Ferguson has been a role model to 
NDT students at Clover Park Technical 
College, many of whom she encouraged 
to join ASNT and later hold leadership 
positions on the Pacific Northwest Section 
board. She was part of the leadership 
team that created the Pacific Northwest 
Section David Hall Student College 
Scholarship Fund, which encourages 
students to pursue careers in NDT. She 
also consistently serves on the Scholarship 
Committee, Radiation Safety Committee, 
NDT of Composites Planning Committee, 
and the annual Pacific Northwest Section 
Golf Tournament Committee, which 
provides funding for the scholarship fund.

Ferguson began her NDT career 
working for the Naval Aviation Depot in 
Jacksonville, Florida, after graduating with 
a degree in materials engineering from 
the University of Florida. While there, she 
mentored fleet and depot technicians 
in the appropriate techniques to use 

for inspecting airplanes for cracks and 
corrosion. She later joined a large chem-
ical manufacturing plant in Pensacola, 
Florida, as the lead metallurgist, where 
she established an SNT-TC-1A certifica-
tion program for plant NDT inspectors. 
She also began Ferguson Consulting 
Services, which provided failure analysis 
support in litigation matters involving 
industrial and aircraft accidents.

Ferguson has spent her entire career 
mentoring students, technicians, and 
engineers in NDT and supporting 
the vision of ASNT. Her primary goal 
has been to help others build greater 
connections and form a more meaningful 
bond with ASNT.

ANITA GREGORIAN
Anita Gregorian graduated with a 
master’s degree in materials engineering 
from the California State University in 
Northridge. The focus of her studies was 
on corrosion and vapor phase inhibitors 
in pipelines and other industrial struc-
tures. Immediately after graduation she 
became a member of the NDT team 
at The Aerospace Corp. based in the 
Los Angeles area, providing technical 
oversight of space missions to military, 
civil, and commercial customers. Her 
position at The Aerospace Corp. neces-
sitates knowledge and experience in 
materials, physics, and NDT to provide 
mission-critical solutions. Gregorian has 
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extensive experience in reviews and 
audits. Her expertise is also called upon 
in emergency on-site inspections of 
space hardware and failure investigations. 
In her role, she regularly interacts with 
NDT practitioners on the manufacturing 
floor, assisting with inspections, new 
technique development, and transfer of 
knowledge toward practical applications. 

Working with aerospace and govern-
mental contractors across the United 
States has given Gregorian insight on 
the needs of NDT technicians, training, 
and certifications. This experience is the 
drive behind her ASNT NDT Level III and 
IRRSP certifications, Society volunteer 
work, and urge to serve on the ASNT 
Board of Directors. In addition to her 
ASNT certifications, she is also certified in 
Cathodic Protection for the Association 
for Materials Protection and Performance.

Furthermore, Gregorian strongly 
believes that the circumstances of the 
past few years have demonstrated 
the importance of supply chains to 
meet national security demands. 
Manufacturers competing for contracts 
are increasingly integrating new materials, 
composites, additively manufactured 
parts, and NDE 4.0 into their processes. 
In this rapid progression in industry, new 
NDT applications often lag due to time 
required for validation and reliability. 
Both Gregorian’s responsibilities at work 
as well as the topic of her PhD research 
focus on these issues—closing the gap 
between the NDT world and industry. 

BRIAN J. MCKENNA
Brian J. McKenna graduated from 
Spartan College of Aeronautics and 
Technology in 1998 and worked his way 
up to Level II status in MT, PT, UT, and 

RT. He spent several years of his career 
in the construction industry, working in 
California, Alaska, and even for some 
time in the Middle East. In December 
1998, McKenna started the company 
Engineering & Inspections in Hawaii, 
which began with three employees 
and grew to 18 full-time employees. In 
January 2007, the company opened its 
Pennsylvania office with three employees, 
and it grew to 75 employees before the 
COVID-19 pandemic. In March 2022, 
the company opened its Tulsa opera-
tions with six employees. Engineering 
& Inspections International offers all the 
basic NDE services along with computed 
radiography, digital radiography, phased 
array ultrasonic testing, and automated 
ultrasonic testing.

McKenna was also instrumental in 
helping start the Hawaii Section of ASNT 
and served as its president for many 
years before leaving Hawaii. 

SATISH S. UDPA
Satish S. Udpa, PhD, serves as a 
University Distinguished Professor at 
Michigan State University (MSU) as 
well as Campus Mobility Director. Prior 
to reverting to his current position in 
October 2019, he served in many admin-
istrative capacities at MSU including 
Acting President, Executive Vice 
President for Administration, Dean of the 
College of Engineering, and Chair of the 
Department of Electrical and Computer 
Engineering. MSU is one of the premier 
land grant universities with an enrollment 
of more than 50 000 students and more 
than 12 000 faculty and staff. He also 
served as the President of the Michigan 
State University Foundation. Udpa was 
the Whitney Professor of Electrical and 
Computer Engineering at Iowa State 

University and a faculty member at 
Colorado State University before joining 
MSU in 2001.

Udpa has worked in the area of NDT 
since the early 1980s. He has focused 
his energies on developing a variety of 
sensors for NDT applications together 
with tools for modeling and devel-
oping them. The NDT systems and 
the algorithms he has developed for 
analyzing data generated by sensors 
are used extensively in industry. He has 
published extensively, holds 10 patents 
in the field of NDT, and was the tech-
nical editor of the Nondestructive Testing 
Handbook, Vol. 5: Electromagnetic 
Testing, third edition, published by the 
American Society for Nondestructive 
Testing. He served as the editor of the 
IEEE Transactions on Magnetics and 
the regional editor of the International 
Journal of Applied Electromagnetics and 
Mechanics until recently. His students 
have gone on to pursue highly produc-
tive careers in industry and academia. 
As Mobility Director, he has champi-
oned major initiatives to catalyze several 
mobility-related activities on campus, 
including the first autonomous (self-
driving) bus on campus.

Udpa is a Fellow of ASNT, Institute 
of Electrical and Electronics Engineers 
(IEEE), and the Indian Society of 
Nondestructive Testing. He is also a 
Fellow of the National Academy of 
Inventors. He currently serves as a 
member of the Michigan Governor’s 
Council on Future Mobility and 
Electrification.  

SCOPE | SOCIETYNEWS
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SECTIONNEWS | SCOPE

CHARLOTTE
C H A R L O T T E ,  N C
1 4  M A R C H  2 0 2 3
1 4  A T T E N D I N G

 Ñ Sonaspection hosted a technical 
meeting of the Charlotte Section at its 
Concord, North Carolina facility. Jeremy 
Ring of Applied Inspection Systems gave 
a presentation on microwave testing of 
composite structures. 

CLEVELAND
C L E V E L A N D ,  O H
2 0  M A R C H  2 0 2 3
2 2  A T T E N D I N G

 Ñ The Cleveland Section met at Mavis 
Winkles Restaurant in Twinsburg, Ohio. 
Colleen Snyder from the Cleveland 
Museum of Art (CMA) gave a presenta-
tion on nondestructive testing techniques 
used in her work.

COLORADO
D E N V E R ,  C O
1 3  A P R I L  2 0 2 3
1 0  A T T E N D I N G

 Ñ The Colorado Section held a virtual 
meeting. Greg Floor presented “NDE in 
the Ski Industry,” discussing his career 
inspecting ski lifts across North America.

CONNECTICUT YANKEE
G R O T O N ,  C T
1 1  A P R I L  2 0 2 3
1 1  A T T E N D I N G

 Ñ The Connecticut Yankee Section 
held a joint meeting with the American 
Welding Society’s (AWS’s) Connecticut 
section at Fischer Technology Inc. in 
Windsor, Connecticut. Rob Weber, 
Fischer Technology’s Technical Director, 
gave a presentation on measuring the 
ferrite content of steel, the coating thick-
ness on steel or aluminum, the thickness 
of electroplated coatings, and the dura-
bility or adhesion of coatings.

GREATER HOUSTON
H O U S T O N ,  T X
8  M A R C H  2 0 2 3
7 5  A T T E N D I N G

 Ñ The Greater Houston Section met 
at Republic Grill at Battleground Golf 
Course in Deer Park, Texas. Randy 
Moreland, Quality-Inspection Advisor 
at EM Golden Pass LNG Terminal, gave 
a presentation on “Remote Quality 
Surveillance.” 

GREATER LOS ANGELES
L O S  A N G E L E S ,  C A
1 7  J A N U A R Y  2 0 2 3
1 3  A T T E N D I N G

 Ñ The Greater Los Angeles Section met 
at Bruce’s Prime Rib in Santa Fe Springs, 
California. Jim Bemis presented on 
“Radiation and Safety Compliance.”

LEWIS & CLARK
P O R T L A N D ,  O R
1 4  M A R C H  2 0 2 3
1 2  A T T E N D I N G

 Ñ The Lewis & Clark Section met and 
covered old business. Guest Jason Boyer 
of Lisin Metallurgical Services presented 
on failure analysis.

METRO NY/
NORTHERN NJ
R O C K V I L L E  C E N T R E ,  N Y
2 2  M A R C H  2 0 2 3
1 5  A T T E N D I N G

 Ñ John Nucatola gave a presentation 
titled “Ground Penetrating Radar (GPR) 
for NDE of Concrete & Masonry” at the 
Metro New York/Northern New Jersey 
Section meeting.

OLD DOMINION
R I C H M O N D ,  V A
2 3  M A R C H  2 0 2 3
7 8  A T T E N D I N G

 Ñ The Old Dominion Section joined 
with members of the Richmond Joint 
Engineers’ Council at their annual awards 
banquet held at the Jefferson Hotel in 
Richmond, Virginia. The keynote speaker, 
Mark Walker of Dominion Energy, deliv-
ered a presentation on the challenges of 
building and delivering electric power 
derived from solar power to the Virginia 
grid. 

PIEDMONT
G R E E N V I L L E ,  S C
1 4  A P R I L  2 0 2 3
3  A T T E N D I N G

 Ñ The Piedmont Section held a virtual 
officer meeting and discussed and 
reviewed events, presentations, and 
more.

SOUTHWESTERN 
ONTARIO
M I S S I S S A U G A ,  O N ,  C A N A D A
3 0  M A R C H  2 0 2 3
7  A T T E N D I N G

 Ñ The Southwestern Ontario Section 
held a virtual executive meeting. The 
Section’s business plan, member-
ship, financial report, and more were 
discussed.  

| SPOTLIGHTCONNECTICUTYANKEE

The Connecticut Yankee Section and AWS Connecticut section 
presented a certificate of appreciation to Steven Pomerantz, 
Chief Operating Officer of Fischer Technology Inc., for presenting, 
hosting the joint meeting, and providing a tour of their facility. 
From left: Al Moore, Kari Slattberg Thibodeau, and Pomerantz.
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SCOPE | AWARDS&HONORS

MOLLY BROWN

2023 Engineering Undergraduate 
Scholarship winner Molly Brown is a 
sophomore at the State University of New 
York College of Environmental Science 
and Forestry (SUNY ESF) majoring in 
environmental resources engineering 
and earning a minor in mathematics. 
Throughout the semester, she works 
as a tutor at SUNY ESF’s Math Learning 
Center, where she assists students with 
whatever math-related questions they 
may have. After this semester, she will 
be assisting one of her professors with 
research on carbon cycling and seques-
tration ecosystem services in natural and 
managed surface water systems.

By the nature of studying engineering 
at an environmental school, it becomes 
apparent how prevalent nondestructive 
testing (NDT) methods are in terms of 
creating sustainable solutions. Brown 
was also able to see sustainable solutions 
firsthand through her internship at Vector 
Magnetics LLC, where she assisted with 
tasks such as parts assemblies, projects 
in the machine shop, and electronics 
testing to assist the company as they 
worked toward various goals.

LAUREL LOGAN

2023 Engineering Undergraduate 
Scholarship winner Laurel Logan has 
always been fascinated by the physical 
sciences and understanding how the 
world around her works. Choosing a 
major in college was a challenge because 
she wanted to learn and understand 
everything, but she ultimately decided on 
mechanical engineering due to its broad-
ness and focus on underlying mechanics.

During Logan’s time in college, 
she had the opportunity to work on 
several research projects, including 
acousto-optic nondestructive inspection, 
which sparked her interest in optics and 
NDT. She also worked at Virginia Tech 
in a mechanical engineering lab with a 
focus on cell mechanics and biomedical 
engineering, which exposed her to a 
different side of mechanical engineering 
research. Logan found herself fascinated 
by the technology they used to conduct 
their studies and began to think more 
about researching and developing engi-
neering sensors and testing technology.

This summer, Logan is excited to 
be interning at Boeing’s Advanced 
Development Center to work on devel-
oping and improving nondestructive 
evaluation technology. Logan is eager 
to explore a wide range of sciences and 
gain exposure to different testing, sensor, 
and ultrasonic technology. Her goal is to 
continue this work in research and devel-
opment after completing her graduate 
education in mechanical engineering.

MICHAEL WILSON

2023 Engineering Undergraduate 
Scholarship winner Michael Wilson was 
born and raised in Arizona, where his 
family established an inspection and 
NDT business. Growing up, Wilson expe-
rienced many aspects of the business 
firsthand and learned the importance of 
uncompromising standards in inspec-
tion and testing, integrity, and safety. 
Today, Wilson is a motivated engineering 
student currently double majoring in 
mechanical engineering and engineering 
design at Rose-Hulman Institute of 
Technology (RHIT). Wilson recently put 
together a team to develop an inven-
tion of his, which was awarded the Bill 
Kline Innovation award at RHIT. A current 
Dean’s List student, Wilson says that the 
knowledge and work ethic he has gained 
through his experience with NDT and the 
industry has given him a solid foundation 
that will serve him well in his future career 
as an engineer.  

ABOUT THE ENGINEERING 
UNDERGRADUATE 
SCHOLARSHIP
The Engineering Undergraduate Scholarship 
is a cash award, currently US$3000 per 
award, that provides an incentive to under-
graduate students enrolled in US universities 
and colleges with recognized engineering 
programs to choose NDT/E as their field of 
specialization.
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PEOPLEWATCH | SCOPE

ASNT Lifetime 
Member 
Sreenivas 
Alampalli has 
been honored 
with inclusion by 
ASCE in its 2023 

class of distinguished members for 
eminence and professional contributions 
to research, practice, and technology 
transfer in inspection, evaluation, testing, 
and monitoring of bridge infrastructure. 
Alampalli’s unique engineering contribu-
tions include advancing NDT methods 
for quantitative evaluation of bridges to 
assure safety, developing a robust bridge 
inspection program, and pioneering 
applications of fiber-reinforced polymers 
for bridge applications.

Alampalli’s research portfolio and 
leadership record are the products of 
a visionary government engineer and 
researcher who has spent much of his 
career promoting the development of 
numerous programs on bridge safety 
and management, not only for the New 
York State Department of Transportation 
(NYS DOT) but for other state DOTs and 
federal agencies as well. From 2003 
to 2006 he served on the international 
stage as a Director at Large on the ASNT 
Board of Directors.

After the Minnesota Bridge collapse 
in 2007, Alampalli was asked to lead 
the ASCE-AASHTO-FHWA Task Force 
to develop a white paper on critical 
research needs in the areas of bridge 
inspection and evaluation. More recently, 
while at NYS DOT he was tasked with 
the massive undertaking of migrating 
the US$100 million annual inspection/
evaluation program he managed from 
a state-specific system to an AASHTO 
element-based national system. In all, 
Alampalli has assembled 30 years’ 
worth of asset management and policy 
development, building successful stra-
tegic public-private-academic part-
nerships, implementing data-driven 
decision-making processes and 
web-based software tools, advising 
senior management, effectively 

managing a diversified and decentralized 
workforce, and more. He has authored 
more than 250 technical publications 
in civil infrastructure and made more 
than 150 presentations on infrastructure 
research. He has been very active with 
professional societies throughout his 
career including serving on several ASCE 
committees and journal editorial boards. 
He also chaired the Transportation 
Research Board (TRB) Committee 
AFF40 on Testing and Evaluation of 
Transportation Structures. He is the 
founding president of the International 
Association for Bridge Maintenance and 
Safety (IABMAS) USA National Group.

Alampalli started out in the 
Department of Irrigation in A.P. State, 
India, as an assistant executive engi-
neer. He was an adjunct at Rensselaer 
Polytechnic Institute and eventually made 
his way to NYS DOT, Prospect Solutions, 
and then Stantec, where he has been 
since 2021. His doctoral degree is from 
Rensselaer in Troy, New York.

Selected honors include the Aftab 
Mufti Lifetime Achievement Award 
(2021) from the International Society for 
Structural Health Monitoring of Intelligent 
Infrastructure, the Hall of Fame Award 
(2016) from the Make the Right Move 
Chess Foundation, the ASNT Bridge NDT 
Lifetime Service Award (2014), the ASCE 
Outstanding Projects and Leaders award 
(2021), and the ASCE Henry L. Michel 
Award for Industry Advancement of 
Research (2013).

Simpson 
Gumpertz & 
Heger (SGH) 
has welcomed 
Keith Kesner as 
a Project Director, 
bolstering the 

firm’s repair and rehabilitation expertise 
and knowledge of concrete performance 
for new and existing structures. He will 
join SGH’s Structural Engineering divi-
sion in New York City, partnering closely 
with professionals across the East Coast 
while operating out of Philadelphia, 

Pennsylvania. Kesner brings more than 
30 years of industry and academic 
experience, specializing in evaluating 
and repairing concrete, masonry, and 
steel structures; assessing concrete 
material performance and deterioration 
through NDT and corrosion analysis; 
and conducting facade inspections and 
repairs.

The Society for 
the Advancement 
of Materials 
and Process 
Engineering 
(SAMPE) North 
America search 

committee is pleased to announce 
Rebekah Stacha as its CEO, effective 
1 June 2023. Stacha is the first woman 
CEO for SAMPE in its 79-year history.

Stacha is a seasoned association 
professional with over 20 years of 
experience in leadership, publishing 
solutions, operations management, 
and people development. As Director 
of Multimedia and Publishing at the 
Society of Petroleum Engineers, she 
was instrumental in the organization’s 
digital transformation, which streamlined 
workflows that increased efficiency and 
customer satisfaction. A graduate of the 
Mays School of Business at Texas A&M 
University with a degree in management, 
she is a Certified Association Executive 
and is an active member of several 
professional organizations including the 
Council of Engineering and Scientific 
Society Executives, Society of Scholarly 
Publishing, and American Society of 
Association Executives.

APPOINTMENTS

ASNT’s Dalton Vidosh has been 
promoted to Accounting Manager. 
Vidosh will be overseeing the daily 
accounting cycle for ASNT and all its 
subsidiaries.

ASNT member Raj Venkatachalam 
has been promoted to Senior Systems 
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Engineering Manager at Varex Imaging 
Corp.

ASNT Lifetime Member Don Locke has 
started a new position as NDT Nadcap 
Auditor at Performance Review Institute.

HUVRdata, a next-generation Inspection 
Data Management Software Platform, 
has announced that ASNT Lifetime 
Member Dave Bajula is joining the 
HUVR Advisor Network (HAN). Bajula is 
the latest of nine industry veterans with 
backgrounds in a range of disciplines 
and asset integrity management tech-
nologies to join HAN. He brings more 
than 40 years of insight and perspective 
formed, in part, from his time as general 
manager of advanced NDT services 
at Acuren, as well as from his time as 
President and Chairperson of ASNT’s 
Board of Directors.

ASNT Lifetime Member Marybeth 
Miceli has accepted an appointment 
to the Transportation Research Board: 
National Academies of Sciences, 
Engineering, and Medicine AKT60 
Committee on Bridge Preservation. This 
is a three-year appointment, and Miceli 
will work with the committee to make 
strides on preservation, inspection, and 
monitoring methods.

North German high-tech company 
Automation Technology, located in Bad 
Oldesloe near Lübeck, is starting a new 
chapter in its 25-year company history 
by expanding to North America. The 
management of the office in the Boston 
metropolitan area will be taken over by 
US-American Gretchen Alper, who has 
already many years of experience in the 
field of machine vision. 

MILESTONES

ASNT member Anish Poudel has 
been awarded the People’s Choice 
Award for Best Presentation at the 
2023 International Wheelset Congress 
conference. 

CGM CIGIEMME S.p.A.’s Eugenio 
Feneri, Head of CGM Electrical 
Department, and Matteo Borini, Head 
of CGM Mechanical Department, 
have obtained the CMSE® – Certified 
Machinery Safety Expert certification.  

| NEWCERTIFICATIONS

ACCP Level II CWI
James Berg 
Tracy D. Blankenship 
William Braun 
Michael Curry 
Greggory Damis 
Bryan Doheny 
Eddie Estrada 
Veronica Garcia 
Chad Geary 
Dustin Haba 
Jacob Martinez 
Juan Mendez 
Kyle Morgan 
Randy Ramos 
Kyle Stevenson 
Robert Weatherholt 
Kyle Whitfield 
James Woods 
Roy J. Ybarra, Jr.

ACCP Professional  
Level III
Leighton McMillan, Jr.

ASNT NDT  
Level III
Niousha Amani 
Htet Lwin Aung 
Joshua D. Bell 
Stephanie Melissa Berry 
Young Tak Chun 
Paramaguru Dhayalan 
Hitesh Grover 
Allan E. James 
Matthew A. Johnson 
Harold Jones 
Abdul Bari K P 
Raghupathy Kanniyappan 
Narasinga Rao Kolipaka 
Surekha Krishnan 

Suraj Manjal 
Paul G. Mattison 
Efrain Munoz, Jr.
Jamie M. Nehrkorn 
Donald A Niles, Jr.
Sun Cheol Noh 
Joseph Perrone 
Tyler Pettit 
Slamet Riyadi 
Daniel Rodriguez 
Jishnu S. Ajay 
Derek J. Schneider 
Syedriaz Shamsudeen 
Bandaru Srinivasarao 
Antony Symonds 
Stephen Andrew 
Thompson 
Ikuo Torisu 
Prabhu Velusamy 
Satish Vishwakarma 

Mas Prasetyo Wibowo 
Brian A. Wright 

ISQ – Oil & Gas 
(UTT) 
Landon Ansley 
Steven Brooks 
Andrew Dugo 
Justin Edwards 
Pablo Garcia 
Brendan Higginbotham 
Richard Meade 
Ramon Mendoza 
Cecil Reiss 
Matheus Romano 
Matthew Sawyer 
Yong Ton 
Nathan Tullos 
Golden Ugbodu 

SCOPE | PEOPLEWATCH

EARN CEUS WITH  
ON-DEMAND 
WEBINARS
Looking for a quick way to earn 
recertification points? ASNT 
Education is here for you! 
Recordings of selected past webi-
nars may be accessed and viewed 
for credit. Webinars are divided 
into sections by topic. To view the 
lineup, go to pathlms.com 
/asnt/courses and scroll down to 
“Webinar Recordings for Credit.” 
Price: ASNT member US$29, 
nonmember US$49. Credit value 
per webinar: 1.0 contact hour 
(0.1 CEU); 0.35 recertification point.

EXCLUSIVE HEALTH 
COVERAGE 
ASNT’s exclusive health coverage 
partner, LIG Solutions, wants you 
and your family to stay healthy 
for 2023. To learn more about all 
ASNT-endorsed business solutions 
and how to access this exclusive 
member benefit program, go to 
asnt.org > Membership > Benefits. 
To request more information, go to 
ligmembers.com/asnt. 

A NEW WAY TO 
READ EBOOKS
ASNT has rolled out a new way to 
access and read ebooks at source 
.asnt.org! Now users can enjoy 
a more streamlined access and 
reading experience, easier keyword 
searches, a less restrictive digital 
rights manager, and a personal 
digital library. No software is 
required; users no longer will need 
to download a separate app to 
view and manage their ebook. An 
optional browser plug-in is avail-
able for annotating and highlighting 
pages. If you have questions, please 
email customersupport@asnt.org.

| SOCIETYNOTES 

Do you have news you’d like to share with the 
NDT community? People Watch publishes notices 
of ASNT members’ promotions, retirements, 
honors, and other milestones. Please send notices 
to the ASNT press release inbox at press@asnt.org. 
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JOHN CHEN
ONE KBR Tech Fellow, KBR
ASNT President (2023–2024) 
HOUSTON, TX

HOW DID YOU FIRST BECOME 
INVOLVED IN NDT?

I started my graduate research 
project in 1995. It had to do with 
ultrasonic testing. Since then, I 
have been more or less working 
in NDT, mostly within the materials 
engineering field.

CAN YOU TELL US ABOUT YOUR 
CERTIFICATION AND TRAINING?

I have six ASNT NDT Level III certif-
icates, a CWI from AWS, and a 
Professional Engineer license from 
six states. Every job I’ve had has 
provided training opportunities 

for me, on average a full 
week (maybe more) of 

away-from-your-job-
type training each 
year for the past 
20 years. A lot of this 
training has been 
directly in NDT tech-
niques; others are 
attending seminars 
to learn new things. 

WHAT’S YOUR EDUCATIONAL 
BACKGROUND?

I received a BE in 1995, a PhD in 
1999, and another PhD in 2005. 
They are all in materials engi-
neering and welding engineering. 
I grew up in an atmosphere where 
my mother and father had always 
emphasized the necessity of 
college and graduate studies. So, I 
always thought a college degree is 
a must-have for all.

IS YOUR WORK FOCUSED 
ON A PARTICULAR FIELD? 

My day-to-day work focuses on 
routine NDT methods and proce-
dures that have already matured 
and need be codified into industry 
standards. I review a lot of NDT 
procedures. The part of KBR 
I’m involved in encompasses 
engineering, procurement, and 
construction work. The company 
bids on large projects and after 
winning the projects—usually 
whole industry plants—the plants 
get designed and built. When 
the equipment, pressure vessels, 
piping, and so on, are being built 
in the shop and erected in the 
field, I make sure that the NDT 
procedures used meet construc-
tion code requirements.

DESCRIBE YOUR WORKING 
ENVIRONMENT. 

I work in an office most of 
time but there are occa-
sions I need to visit shops 

or construction sites. 
Sometimes I work alone; 

other times I am a member 
of a larger team.

ARE YOU INVOLVED 
IN YOUR SECTION?

I’ve served in officer, 
director, committee chair, 
and committee member 

positions for the Greater Houston 
Section. I’ve been serving at 
the national level for ASNT for 
awhile. I have served in officer, 
director, committee member, 
and committee chair positions 
(including Technical Editor of 
Materials Evaluation), and I start my 
term as President this July. I have 
come to know many, many individ-
uals in the industry, who I would 
have never come to know if I had 
not been volunteering for ASNT.

HOW HAS NDT CHANGED 
DURING YOUR CAREER? WHAT 
TRENDS DO YOU SEE?

Digitalization. This will continue 
and is an enabling technology for 
artificial intelligence. 

WHAT’S BEEN YOUR GREATEST 
CHALLENGE ON THIS JOURNEY?

There are so many things to learn, 
at the same time new technolo-
gies are constantly coming out. It 
is overwhelming at times to keep 
pace with the new developments 
and frustrating at times to realize 
that I have never really understood 
anything. One of the challenges is 
to get used to that, yet not give up 
learning. 

WOULD YOU SHARE WITH US A 
PERSONAL OR PROFESSIONAL 
BUCKET LIST ITEM?

Once I had a wish to get a Level III 
in all the methods that ASNT 
offers a Level III certificate. Now 
I know how hard it really is to be 
truly qualified and certified in all 
methods.

DO YOU HAVE A FAVORITE 
QUOTE THAT INSPIRES YOUR 
WORK OR PERSONAL LIFE?

Treat everyone the same way you 
want them to treat you.
  

SCOPE | ATWORK
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ASNTQ&A | SCOPE

NAVY SHIPBUILDERS NDT LEVEL III SPECIFIC EXAM 
This month’s Q&A focuses on the Navy Shipbuilders NDT Level III Specific Exam, 
now administered by ASNT. This article is adapted from a recent episode of Chat 
NDT with ASNT featuring Gary Zimak, Director of Quality Supply at Newport News 
Shipbuilding, and Brian Frye, ISQ Program Manager at ASNT. For more details on 
these and more topics, listen to the full episode at asnt.org > Publications > Podcast. 

Q: What is NAVSEA? 

A: NAVSEA stands for the Naval 
Sea Systems Command, an 
organization that is an arm of 
the United States Navy. NAVSEA 
engineers, builds, buys, and 
maintains ships, submarines, and 
combat systems. It provides the 
requirements for shipbuilders to 
follow, which includes an NDT 
program. 

Q: What is the Navy Shipbuilders NDT 
Level III Specific Exam? 

A: This is a Newport News 
Shipbuilding and General 
Dynamics Electric Boat project, 
working together with NAVSEA 
and the US Navy. These 
organizations have been looking 
for ways to improve how the 
shipbuilder suppliers administer 
the examiner-specific examination 
to NDT Level IIIs. Currently, all 
examiner personnel are required 
to pass an examiner-specific 
examination in accordance with 
NAVSEA Technical Publication 
T9074-AS-GIB-010/271, also 
referred to as NAVSEA 271. This is 
a technical publication generated 
by the Navy that shipbuilders 
follow to manage their NDT 
programs. 

 After evaluating the benefits of 
using a third party, such as ASNT, 
the group implemented a detailed 
strategy working with ASNT 
to develop and administer the 
Specific Exams. These exams will 
be administered through ASNT 
using Pearson VUE. 

Q: What are the benefits of the new 
Navy Shipbuilders NDT Level III 
Specific Exam to the industry? 

A: Previously, NAVSEA 271 required 
that the Specific Exams be 
administered by the employer. 
Just like any other program or 
any other process, there’s always 
some inherent variability in 
the quality of the exams when 
they’re administered by every 
organization throughout the supply 
base. Working with ASNT ensures 
that the exams achieve the highest 
standards in accordance with 
the Navy as well as ASNT. This 
adds consistency and rigor to the 
examination process and provides 
a centralized database that can be 
searched to find certified Level IIIs. 
It will also eliminate the need for 
suppliers to administer their own 
Specific Exam. 

Q: What are the benefits of the new 
Navy Shipbuilders NDT Level III 
Specific Exam to individuals 
working in this industry? 

A: With this new exam, inspectors 
will no longer have to continually 
take multiple Specific Exams for 
each company they work for. If 
they have ASNT certification along 
with this new Specific Exam, one 
Specific Exam will cover all the 
work. 

Q: Who can take the Navy 
Shipbuilders NDT Level III Specific 
Exam? 

A: Anyone who performs work 
in accordance with Newport 
News Shipbuilding or General 
Dynamics Electric Boat where a 
contract invokes NAVSEA 271 
can take this exam. That is, if you 
are a supplier of either Newport 
News Shipbuilding or Electric 
Boat and you are performing 
work in accordance with those 
requirements, you will be able 
to take that exam. However, if 
you’re an individual who does 
not currently have a contract 
either through one of Newport 
News Shipbuilding’s or General 
Dynamics Electric Boat’s primes or 
sub tiers, we will not allow you to 
take the exam at this time. 

 The individuals who will be 
taking this exam have either 
been previously certified through 
the company they work for—
so that company would have 
previously administered their 
Specific Exam—or they could be a 
brand-new Level III just starting for 
a company, and this might be the 
first time they’re taking this exam.  

Q: Will there be training material 
available to prepare for this NDT 
Level III Specific Exam? 

A: Electric Boat and Newport News 
Shipbuilding are working together 
to develop training material 
that will be available to the NDT 
Level III Examiner candidates prior 
to taking the exam. 

For more information, visit ASNT 
Certification Services LLC’s website  
at asntcertification.org or email  
certification@asnt.org.  
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