conduct NDE surveys, and accessibility of all bridge compo- nents. At the same time, the presented examples of enhanced visualization of NDE data and improved interpretation of NDE results through a joint analysis of results of multiple NDE tech- nologies illustrate the potential for both more reliable and intu- itive detection of defects and a more objective description of the condition. ACKNOWLEDGMENTS Some of the presented work was funded by the Federal Highway Adminis- tration’s Long Term Bridge Performance (LTBP) Program and by Vingroup Joint Stock Co. and supported by Vingroup Innovation Foundation (VINIF) under project code VINIF.2020.NCUD.DA094. REFERENCES AASHTO. 2011. AASHTO TP 95-11: Standard Test Method for Surface Resis- tivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. Washington: AASHTO. Almallah, N., and N. Gucunski. 2019. “Automated Detection and Visualiza- tion of Defects Using Constant Phase Data from Air-Coupled Impact Echo Testing of Concrete Decks,” Proceedings of the 98th Annual Transportation Board Meeting, Washington, DC. ASCE. 2021. 2021 Infrastructure Report Card, American Society of Civil Engineers (ASCE). infrastructurereportcard.org. ASTM. 2015. ASTM C876–15: Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. West Conshohocken, PA: ASTM International. Azari, H., D. Yuan, S. Nazarian, and N. Gucunski. 2012. “Sonic Methods to Detect Delamination in Concrete Bridge Decks: Impact of Testing Config- uration and Data Analysis Approach.” Transportation Research Record: Journal of the Transportation Research Board 2292 (1): 113–24. https://doi. org/10.3141/2292-14. Barnes, C.L., and J.F. Trottier. 2000. “Ground-penetrating Radar for Network-level Concrete Deck Repair Management.” Journal of Transpor- tation Engineering 126 (3): 257–62. https://doi.org/10.1061/(ASCE)0733- 947X(2000)126:3(257). Barnes, C., J.F. Trottier, and D. Forgeron. 2008. “Improved Concrete Bridge Deck Evaluation Using GPR by Accounting for Signal Depth-Amplitude Effects.” NDT & E International 41 (6): 427–33. doi:10.1016/j. ndteint.2008.03.005. Bien, J., L. Elfgren, and J. Olofsson (eds.). 2007. Sustainable Bridges – Assessment for Future Traffic Demands and Longer Lives, TIP3-CT-2003- 001653 within the 6th Framework Programme of EU, ISBN 978-7125-161-0, Wroclaw, Poland. Daniels, D.J. (ed.). 2004. Ground Penetrating Radar. 1st ed. London: The Institution of Engineering and Technology. De La Haza, A., A.A. Samokrutov, and P.A. Samokrutov. 2013. “Assess- ment of Concrete Structures Using the Mira and Eyecon Ultrasonic Shear Wave Devices and the SAFT-C Image Reconstruction Technique.” Construction & Building Materials 38:1276–91. https://doi.org/10.1016/j. conbuildmat.2011.06.002. Dinh, K., T. Zayed, F. Romero, and A. Tarussov. 2015. “Method for Analyzing Time-series GPR data of Concrete Bridge Decks.” Journal of Bridge Engineering 20 (6): 04014086. https://doi.org/10.1061/(ASCE) BE.1943-5592.0000679. Dinh, K., N. Gucunski, J. Kim, and T.H. Duong. 2016. “Understanding Depth-Amplitude Effects in Assessment of GPR Data from Concrete Bridge Decks.” NDT & E Journal 83: 48–58. https://doi.org/10.1016/j. ndteint.2016.06.004 Dinh, K., N. Gucunski, and T. Zayed. 2019. “Automated Visualization of Concrete Bridge Deck Condition from GPR Data.” NDT & E International 102: 120–28. https://doi.org/10.1016/j.ndteint.2018.11.015. Dinh, K., and N. Gucunski. 2021. “Factors Affecting the Detectability of Concrete Delamination in GPR Images.” Construction & Building Materials 274: 121837. https://doi.org/10.1016/j.conbuildmat.2020.121837. Elsener, B.C. Andrade, J. Gulikers, R. Polder, and M. Raupach. 2003. “Half-cell Potential Measurements - Potential Mapping on Reinforced Concrete Structures.” Materials and Structures 36 (Aug): 461–71. https:// doi.org/10.1007/BF02481526. Gibson, A., and J.S. Popovics. 2005. “Lamb Wave Basis for Impact-Echo Method Analysis.” Journal of Engineering Mechanics 131 (4) 438–443. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(438). Goeller, A., and B. Jungstadt. 2018. “Mikrowellen-Feuchtescans an großen Bauwerken – Anwendungen des Mikrowellenscanners MOIST SCAN 100.” Fachtagung Bauwerksdiagnose, Feb. 15- 16, Berlin (DGZfP Bau-2018), NDT. net Issue: 2018-07. Gowers, K.R., and S.G. Millard. 1999. “Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique.” ACI Materials Journal 96 (5): 536–42. Gucunski, N., A. Imani, F. Romero, S. Nazarian, H Azari, H. Wiggen- hauser, P. Shokouhi, A. Taffe, and D. Kutrubes. 2013. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration, SHRP 2 Report S2-R06A-RR-1, Transportation Research Board, Washington, D.C. Gucunski, N., B. Pailes, J. Kim, H. Azari, and K. Dinh. 2016. “Capture and Quantification of Deterioration Progression in Concrete Bridge Decks Through Periodical NDE Surveys,” Journal of Infrastructure Systems, 23 (1). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000321 Gucunski, N., B. Basily, J. Kim, J. Yi, T. Duong, K. Dinh, S.-H. Kee, and A. Maher. 2017. “RABIT: Implementation, Performance Validation and Inte- gration with Other Robotic Platforms for Improved Management of Bridge Decks.” International Journal of Intelligent Robotics and Applications 1: 271–86. https://doi.org/10.1007/s41315-017-0027-5. Hornbostel, K., C.K. Larsen, and M.R. Geiker. 2013. “Relationship between Concrete Resistivity and Corrosion Rate—A Literature Review.” Cement and Concrete Composites 39: 60–72. https://doi.org/10.1016/j.cemconcomp .2013.03.019. Kee, S.H., and N. Gucunski. 2016. “Interpretation of Flexural Vibration Modes from Impact-Echo Testing.” Journal of Infrastructure Systems 22 (3): 04016009. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000291. Kim, J., N. Gucunski, T.H. Duong, and K. Dinh. 2017. “Three-dimen- sional Visualization and Presentation of Bridge Deck Condition Based on Multiple NDE Data.” Journal of Infrastructure Systems 23 (3): B4016012. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000341. Kim, J., N. Gucunski, and K. Dinh. 2019. “Deterioration and Predictive Condition Modeling of Concrete Bridge Decks Based on Data from Periodic NDE Surveys.” Journal of Infrastructure Systems 25 (2). https://doi. org/10.1061/(ASCE)IS.1943-555X.0000483. Maser, K.R., and W.M. Kim Roddis. 1990. “Principles of Thermography and Radar for Bridge Deck Assessment.” Journal of Transportation Engineering 116 (5): 583–601. https://doi.org/10.1061/(ASCE)0733-947X(1990)116:5(583). Maser, K. and M. Bernhardt. 2000. “Statewide Bridge Deck Survey using Ground Penetrating Radar.” Structural Materials Technology IV – An NDT Conference, Atlantic City, NJ. Maierhofer, C., A. Brink, M. Roellig, and H. Wiggenhauser. 2001. “Detec- tion of Shallow Voids in Concrete Structures with Impulse Thermography and Radar.” Proceedings of the 9th Structural Faults & Repair Conference, London, United Kingdom. Minor, M., H. Dulimarta, G. Danghi, R. Mukherjee, R. Lal Tummala, and D. Aslam. 2000. “Design, implementation, and evaluation of an under-actuated miniature biped climbing robot,” Proceedings. 2000 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), pp. 1999-2005 vol.3, https://doi.org/10.1109/ IROS.2000.895264. Nazarian, S., M. Baker, and S. Reddy. 1994. “Nondestructive Testing of Pavements and Backcalculation of Moduli: Second Volume,” STP 1198, 473–487. Philadelphia, PA.: ASTM Publication. doi:10.1520/STP18165S. Nguyen, S.T., and H.M. La. 2019. “Roller Chain-Like Robot For Steel Bridge Inspection.” Proceedings of the 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-9), St. Louis, MO. J A N U A R Y 2 0 2 3 • M AT E R I A L S E V A L U AT I O N 65 2301 ME Jan New.indd 65 12/20/22 8:15 AM
Nguyen, S.T., and H.M. La. 2021. “A Climbing Robot for Steel Bridge Inspection.” Journal of Intelligent & Robotic Systems 102 (4): 75. https://doi. org/10.1007/s10846-020-01266-1. Nguyen, A., G. Klysz, F. Deby, and J.-P. Balayssac. 2017. “Evaluation of Water Content Gradient using a New Configuration of Linear Array Four- Point Probe for Electrical Resistivity Measurement.” Cement and Concrete Composites 83: 308–22. https://doi.org/10.1016/j.cemconcomp.2017.07.020. Nguyen, S.T., A.Q. Pham, C. Motley, and H.M. La. 2020. “A Practical Climbing Robot for Steel Bridge Inspection.” 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9322–9328, https:// doi.org/10.1109/ICRA40945.2020.9196892. Pashoutani, S., J. Zhu, C. Sim, B. Mazzeo, and S. Guthrie. 2020. Devel- opment and Implementation of a Moving Nondestructive Evaluation Platform for Bridge Deck Inspection, Report SPR-P1(17) M075, Nebraska DOT. Raupach, M., K. Reichling, H. Wiggenhauser, M. Stoppel, G. Dobmann, and J. Kurz. 2009. “BETOSCAN 0 An Instrumented Mobile Robot System for the Diagnosis of Reinforced Concrete Floors.” Proc. 2nd Intl. Conf. on Concrete Repair, Rehabilitation and Retrofitting II, ICCRRR-2, November 24-26, 2008, Cape Town, South Africa, CRC Press, 651-655. Robles, K. P. V., J.-J. Yee, and S.-H. Kee. 2022. “Electrical Resistivity Measurements for Nondestructive Evaluation of Chloride-Induced Dete- rioration of Reinforced Concrete-A Review.” Materials (Basel) 15 (8): 2725. https://doi.org/10.3390/ma15082725. Rupnow, T.D., and P.J. Icenogle. 2012. “Surface Resistivity Measure- ments Evaluated as Alternative to Rapid Chloride Permeability Test for Quality Assurance and Acceptance.” Transportation Research Record: Journal of the Transportation Research Board 2290 (1): 30–37. https://doi. org/10.3141/2290-04. Sansalone, M., and N.J. Carino. 1989. “Detecting Delaminations in Concrete Slabs with and without Overlays Using the Impact-Echo Method.” ACI Materials Journal 86 (2): 175–84. Sun, H. B., J.Y. Zhu, and S.Y. Ham. 2018. “Automated Acoustic Scanning System for Delamination Detection in Concrete Bridge Decks.” Journal of Bridge Engineering 23 (6): 04018027. https://doi.org/10.1061/(ASCE) BE.1943-5592.0001237. Tarussov, A., M. Vandry, and A. De La Haza. 2013. “Condition Assessment of Concrete Structures using a New Analysis Method: Ground-Penetrating Radar Computer-Assisted Visual Interpretation.” Construction & Building Materials 38:1246–54. https://doi.org/10.1016/j.conbuildmat.2012.05.026. Tirthankar, B., S. Ryan, T. Fletcher, K. Navinda, D. Ross, W. Brett, B. James, H. Karsten, and E. Alberto. 2018. “Magneto: A Versatile Multi-Limbed Inspection Robot,” Proceedings of the 2018 IEEE/RSJ Intern. Conf. on Intel- ligent Robots and Systems (IROS), Madrid, Spain, pp. 1–5. Washer, G., R. Fenwick, N. Bolleni, and J. Harper. 2009. “Effects of Environ- mental Variables on Infrared Imaging of Subsurface Features of Concrete Bridges.” Transportation Research Record 2108 (1): 107–114. https://doi. org/10.3141/2108-12. Zhu, J., and J.S. Popovics. 2007. “Imaging Concrete Structures Using Air-Coupled Impact Echo.” Journal of Engineering Mechanics 133 (6): 628–40. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(628). ME | NDEOFBRIDGES 66 M AT E R I A L S E V A L U AT I O N • J A N U A R Y 2 0 2 3 2301 ME Jan New.indd 66 12/20/22 8:15 AM
ASNT grants non-exclusive, non-transferable license of this material to . All rights reserved. © ASNT 2025. To report unauthorized use, contact: customersupport@asnt.org