structural reliability, and process
control.
Nonetheless, challenges remain
in standardizing UA&UQ methods,
improving AI model interpretability,
and integrating hybrid physics and AI
uncertainty models. Future research
should focus on scalable real-time UQ,
uncertainty-aware autonomous NDE,
and digital twin–driven predictive main-
tenance. These innovations will set new
benchmarks for automation, reliabil-
ity, and safety, ultimately enabling fully
automated, uncertainty-aware inspec-
tions for cost-effective and risk-informed
decision-making.
AUTHORS
Zi Li: Assistant Professor, Department of Physics
and Engineering, Alma College, Alma, MI
Department of Electrical and Computer Engi-
neering, Michigan State University, MI liz@
alma.edu lizi4@msu.edu
Yiming Deng: Professor, Nondestructive Evalu-
ation Laboratory, Department of Electrical and
Computer Engineering, Michigan State Univer-
sity, East Lansing, MI dengyimi@egr.msu.edu
Materials Evaluation 83 (8): 24–39
https://doi.org/10.32548/2025.me-04541
©2025 American Society for Nondestructive Testing
REFERENCES
1. Taheri, H., and A. S. Beni. First online
6 January 2025. “Artificial Intelligence, Machine
Learning, and Smart Technologies for Nonde-
structive Evaluation.” In Handbook of Nonde-
structive Evaluation 4.0, pp. 1–29. Meyendorf,
N., N. Ida, R. Singh, and J. Vrana (eds.). Springer
Cham. https://doi.org/10.1007/978-3-030-48200-
8_70-1.
2. Meyendorf, N., N. Ida, R. Singh, and J.
Vrana (eds.). 2021. Handbook of Nondestructive
Evaluation 4.0. Springer Cham. https://doi.
org/10.1007/978-3-030-73206-6.
3. Jaber, A., S. S. Karganroudi, M. S. Meiabadi,
A. Aminzadeh, H. Ibrahim, M. Adda, and
H. Taheri. 2022. “On Smart Geometric
Non-Destructive Evaluation: Inspection
Methods, Overview, and Challenges.” Materials
(Basel) 15 (20): 7187. https://doi.org/10.3390/
ma15207187.
4. Fong, J. T., N. A. Heckert, J. J. Filliben, and S.
R. Doctor. 2018. “Three Approaches to Quan-
tification of NDE Uncertainty and a Detailed
Exposition of the Expert Panel Approach Using
the Sheffield Elicitation Framework.” in Volume
1A: Codes and Standards: V01AT01A007. ASME
2018 Pressure Vessels and Piping Conference,
Prague, Czech Republic, 15–20 July 2018. https://
doi.org/10.1115/PVP2018-84771.
5. Potukuchi, S., V. Chinthapenta, and G. Raju.
2023. “A review of NDE techniques for hydro-
gels.” Nondestructive Testing and Evaluation 38
(1): 1–33. https://doi.org/10.1080/10589759
.2022.2144304.
6. Bøving, K. G. 1989. NDE handbook:
non-destructive examination methods for
condition monitoring. London, Boston:
Butterworths.
7. Vejdannik, M., A. Sadr, V. H. C. de Albu-
querque, and J. M. R. S. Tavares. First online
28 June 2018. “Signal Processing for NDE.” In
Handbook of Advanced Non-Destructive Evalua-
tion, pp. 1–19. Ida, N., and N. Meyendorf (eds.).
Springer Cham. https://doi.org/10.1007/978-3-
319-30050-4_53-1.
8. Bertovic, M. 2015. “Human factors in
non-destructive testing (NDT): risks and chal-
lenges of mechanised NDT.” Doctoral thesis.
Technische Universität Berlin. https://doi
.org/10.14279/depositonce-4685.
9. Dann, M. R., and L. Huyse. 2018. “The
effect of inspection sizing uncertainty on the
maximum corrosion growth in pipelines.” Struc-
tural Safety 70: 71–81. https://doi.org/10.1016/j.
strusafe.2017.10.005.
10. Aldrin, J., D. Motes, M. Hughes, D. Forsyth,
E. Sabbagh, H. A. Sabbagh, R. K. Murphy, G.
Nuxoll, C. Knott, and E. A. Lindgren. 2025.
“Uncertainty Evaluation of Crack Sizing Capa-
bility Incorporating Model-Based Inversion
Applied to Bolt-Hole Eddy Current Inspections.”
Materials Evaluation 83 (8): 42–56.
11. Knott, C., C. S. Kabban, and J. Aldrin.
2025. “Multivariate Probability of Detection
Modeling Including Categorical Variables and
Higher-Order Response Models.” Materials Eval-
uation 83 (8): 57–72.
12. Tomizawa, T., and N. Yusa. 2025. “Proba-
bilistic Sizing of a Fatigue Crack on Type 304
Austenitic Stainless Steel from Eddy Current
Signals.” Materials Evaluation 83 (8): 73–80.
13. Chiachío, M., M. Megía, J. Chiachío, J.
Fernandez, and M. L. Jalón. 2022. “Structural
digital twin framework: Formulation and tech-
nology integration.” Automation in Construc-
tion 140: 104333. https://doi.org/10.1016/j.
autcon.2022.104333.
14. Li, Z. 2023. Uncertainty Quantification
Framework with Interdependent Dynamics of
Data, Modeling, and Learning in Nondestructive
Evaluation. Doctoral thesis. Michigan State
University. https://doi.org/10.25335/34mn-bn95.
15. Ceberio, J., J.-C. Cortés, F. Fernández de
Vega, O. Garnica, J. I. Hidalgo, J. M. Velasco, and
R.-J. Villanueva. 2022. “Approaching epistemic
and aleatoric uncertainty with evolutionary opti-
mization: examples and challenges.” Proceedings
of the 2022 Genetic and Evolutionary Computa-
tion Conference Companion: 1909–1915. https://
doi.org/10.1145/3520304.3533978.
16. Depeweg, S., J. M. Hernández-Lobato, F.
Doshi-Velez, and S. Udluft. 2018. “Decomposi-
tion of Uncertainty in Bayesian Deep Learning
for Efficient and Risk-sensitive Learning.” arXiv.
https://doi.org/10.48550/arXiv.1710.07283.
17. Charpentier, B., R. Senanayake, M. Kochen-
derfer, and S. Günnemann. 2022. “Disentan-
gling Epistemic and Aleatoric Uncertainty in
Reinforcement Learning.” arXiv. https://doi.
org/10.48550/arXiv.2206.01558.
18. Zschocke, S., W. Graf, and M. Kaliske. 2023.
“Incorporating uncertainty in stress-strain data
acquisition: Extended model-free data-driven
identification.” Proceedings in Applied Math-
ematics and Mechanics 23 (2): e202300008.
https://doi.org/10.1002/pamm.202300008.
19. Li, A., A. D. Parsekian, D. Grana, and B. J.
Carr. May 2025. “Quantification of measurement
uncertainty in electrical resistivity tomography
data and its effect on the inverted resistivity
model.” Geophysics 90 (3): WA275–91. https://
doi.org/10.1190/geo2024-0466.1.
20. Abebe, M., Y. Cho, S. C. Han, and B. Koo.
2024. “Mitigating Measurement Inaccuracies
in Digital Twins of Construction Machinery
through Multi-Objective Optimization.” Sensors
(Basel) 24 (11): 3347. https://doi.org/10.3390/
s24113347.
21. Herrera, P., C. Goyne, and R. Rockwell. 2024.
“Propagation of uncertainty in experimental
dynamic coefficients of fluid film journal
bearings.” Journal of Tribology 146 (7): 074501.
https://doi.org/10.1115/1.4065002.
22. Momeni, H., and A. Ebrahimkhanlou. 2022.
“High-dimensional data analytics in struc-
tural health monitoring and non-destructive
evaluation: A review paper.” Smart Materials
and Structures 31 (4): 043001. https://doi.
org/10.1088/1361-665X/ac50f4.
23. Jasiūnienė, E., B. Yilmaz, D. Smagulova,
G. A. Bhat, V. Cicėnas, E. Žukauskas, and L.
Mažeika. 2022. “Non-Destructive Evaluation of
the Quality of Adhesive Joints Using Ultrasound,
X-ray, and Feature-Based Data Fusion.” Applied
Sciences (Basel, Switzerland) 12 (24): 12930.
https://doi.org/10.3390/app122412930.
24. Li, Z., and Y. Deng. 2024. “Quantifying
predictive uncertainty in damage classifi-
cation for nondestructive evaluation using
Bayesian approximation and deep learning.”
Inverse Problems 40 (4): 045031. https://doi.
org/10.1088/1361-6420/ad2f63.
25. Huang, P., Z. Bao, R. Huang, J. Jia, K. Liu,
X. Yu, W. Yin, and Y. Xie. 2023. “Decoupling
Permeability, Conductivity, Thickness, Lift-Off
for Eddy Current Testing Using Machine
Learning.” IEEE Transactions on Instrumenta-
tion and Measurement 72: 1–10. https://doi.
org/10.1109/TIM.2023.3293565.
26. Wang, J., E. Li, J. Wu, and X. Xu. 2021.
“Linearization of the lift-off effect for magnetic
flux leakage based on Fourier transform.”
Measurement Science &Technology 32 (6):
065012. https://doi.org/10.1088/1361-6501/
abe89e.
27. Qian, Y., H. Wan, B. Yang, J.-C. Golaz, B.
Harrop, Z. Hou, V. E. Larson, L. R. Leung, G. Lin,
W. Lin, P.-L. Ma, H.-Y. Ma, P. Rasch, B. Singh, H.
Wang, S. Xie, and K. Zhang. 2018. “Parametric
Sensitivity and Uncertainty Quantification
in the Version 1 of E3SM Atmosphere Model
Based on Short Perturbed Parameter Ensemble
Simulations.” Journal of Geophysical Research:
Atmospheres 123 (23): 13046–13073. https://doi.
org/10.1029/2018JD028927.
NDT TUTORIAL
|
UA&UQ
36
M AT E R I A L S E V A L U AT I O N A U G U S T 2 0 2 5
28. Lei, C. L., S. Ghosh, D. G. Whittaker, Y.
Aboelkassem, K. A. Beattie, C. D. Cantwell,
T. Delhaas, C. Houston, G. M. Novaes, A. V.
Panfilov, P. Pathmanathan, M. Riabiz, R. W. dos
Santos, J. Walmsley, K. Worden, G. R. Mirams,
and R. D. Wilkinson. 2020. “Considering
discrepancy when calibrating a mechanistic
electrophysiology model.” Philosophical Trans-
actions of the Royal Society A: Mathematical,
Physical, and Engineering Sciences 378 (2173):
20190349. https://doi.org/10.1098/rsta.2019.0349.
29. Xie, W., C. Li, Y. Wu, and P. Zhang. 2021.
“A Nonparametric Bayesian Framework for
Uncertainty Quantification in Stochastic Simu-
lation.” SIAM/ASA Journal on Uncertainty
Quantification 9 (4): 1527–52. https://doi.
org/10.1137/20M1345517.
30. Kontolati, K., D. Loukrezis, K. R. M. Dos
Santos, D. G. Giovanis, and M. D. Shields. 2022.
“Manifold Learning-based Polynomial Chaos
Expansions for High-dimensional Surrogate
Models.” International Journal for Uncertainty
Quantification 12 (4): 39–64. https://doi.
org/10.1615/Int.J.UncertaintyQuantification
.2022039936.
31. Zhang, B., Q. Guo, Y. Wang, and M. Zhan.
2019. “Model-Form and Parameter Uncertainty
Quantification in Structural Vibration Simula-
tion Using Fractional Derivatives.” Journal of
Computational and Nonlinear Dynamics 14 (5):
051006. https://doi.org/10.1115/1.4042689.
32. Nasir, V., and F. Sassani. 2021. “A review on
deep learning in machining and tool moni-
toring: Methods, opportunities, and challenges.”
International Journal of Advanced Manufac-
turing Technology 115 (9–10): 2683–709. https://
doi.org/10.1007/s00170-021-07325-7.
33. Ochella, S., F. Dinmohammadi, and M.
Shafiee. 2024. “Bayesian neural networks
for uncertainty quantification in remaining
useful life prediction of systems with sensor
monitoring.” Advances in Mechanical Engi-
neering 16 (7): 16878132241239802. https://doi.
org/10.1177/16878132241239802.
34. Xiong, Y., S. Liu, L. Hou, and T. Zhou. 2024.
“Magnetic flux leakage defect size estimation
method based on physics-informed neural
network.” Philosophical Transactions. Series
A, Mathematical, Physical, and Engineering
Sciences 382 (2264): 20220387. https://doi.
org/10.1098/rsta.2022.0387.
35. Sandhu, H. K., S. S. Bodda, and A. Gupta.
2023. “A Future with Machine Learning: Review
of Condition Assessment of Structures and
Mechanical Systems in Nuclear Facilities.”
Energies 16 (6): 2628. https://doi.org/10.3390/
en16062628.
36. Xu, C., W. Zhao, J. Zhao, Z. Guan, X. Song,
and J. Li. 2023. “Uncertainty-Aware Multiview
Deep Learning for Internet of Things Applica-
tions.” IEEE Transactions on Industrial Infor-
matics 19 (2): 1456–66. https://doi.org/10.1109/
TII.2022.3206343.
37. Li, Z., Y. Yang, L. Li, H. Ma, and X. Chen.
2022. “Model-Free Fault Detection Based on
Performance Residual for Feedback Control
Systems.” IEEE Transactions on Circuits and
Systems II, Express Briefs 69 (11): 4453–57.
https://doi.org/10.1109/TCSII.2022.3182655.
38. Liang, Z., X. Wang, Y. Cui, W. Xu, Y. Zhang,
and Y. He. 2023. “A new data-driven probabi-
listic fatigue life prediction framework informed
by experiments and multiscale simulation.”
International Journal of Fatigue 174: 107731.
https://doi.org/10.1016/j.ijfatigue.2023.107731.
39. Shi, H., M. Ebrahimi, P. Zhou, K. Shao,
and J. Li. 2023. “Ultrasonic and phased-array
inspection in titanium-based alloys: A review.”
Proceedings of the Institution of Mechanical
Engineers: Part E, Journal of Process Mechan-
ical Engineering 237 (2): 511–30. https://doi.
org/10.1177/09544089221114253.
40. Li, Z., X. Huang, O. Elshafiey, S. Mukherjee,
and Y. Deng, 2021. “FEM of magnetic flux
leakage signal for uncertainty estimation in
crack depth classification using Bayesian convo-
lutional neural network and deep ensemble.”
2021 International Applied Computational Elec-
tromagnetics Society Symposium (ACES): 1–4.
41. Virkkunen, I., T. Koskinen, S. Papula, T.
Sarikka, and H. Hänninen. 2019. “Comparison
of â Versus a and Hit/Miss POD-Estimation
Methods: A European Viewpoint.” Journal of
Nondestructive Evaluation 38 (4): 89. https://doi.
org/10.1007/s10921-019-0628-z.
42. Knopp, J., R. Grandhi, L. Zeng, and J. Aldrin.
2012. “Considerations for Statistical Analysis
of Nondestructive Evaluation Data: Hit/Miss
Analysis.” E-Journal of Advanced Maintenance
4 (3): 105–115. https://www.jsm.or.jp/ejam/
Vol.4No.3/AA/AA45/AA45.pdf.
43. Jiang, F., Z. Guan, Z. Li, and X. Wang. 2021.
“A method of predicting visual detectability
of low-velocity impact damage in composite
structures based on logistic regression model.”
Chinese Journal of Aeronautics 34 (1): 296–308.
https://doi.org/10.1016/j.cja.2020.10.006.
44. Lampman, S., M. Mulherin, and R. Shipley.
2022. “Nondestructive Testing in Failure
Analysis.” Journal of Failure Analysis and
Prevention 22 (1): 66–97. https://doi.org/10.1007/
s11668-021-01325-1.
45. Sarkar, S., P. Wahi, and P. Munshi.
2019. “An empirical correction method for
beam-hardening artifact in Computerized
Tomography (CT) images.” NDT &E Interna-
tional 102: 104–13. https://doi.org/10.1016/j.
ndteint.2018.11.009.
46. Kurz, J. H., A. Jüngert, S. Dugan, G.
Dobmann, and C. Boller. 2013. “Reliability
considerations of NDT by probability of
detection (POD) determination using ultra-
sound phased array.” Engineering Failure
Analysis 35: 609–17. https://doi.org/10.1016/j.
engfailanal.2013.06.008.
47. Zhu, J., Q. Min, J. Wu, and G. Y. Tian. 2018.
“Probability of Detection for Eddy Current
Pulsed Thermography of Angular Defect Quan-
tification.” IEEE Transactions on Industrial Infor-
matics 14 (12): 5658–66. https://doi.org/10.1109/
TII.2018.2866443.
48. Yosifov, M., M. Reiter, S. Heupl, C. Gusen-
bauer, B. Fröhler, R. Fernández-Gutiérrez, J. De
Beenhouwer, J. Sijbers, J. Kastner, and C. Heinzl.
2022. “Probability of detection applied to X-ray
inspection using numerical simulations.” Nonde-
structive Testing and Evaluation 37 (5): 536–51.
https://doi.org/10.1080/10589759.2022.2071892.
49. Suwanasri, C., I. Yongyee, and T. Suwanasri.
2022. “Lifetime Estimation of Transmission Line
Based on Health Index and Normal Distribution
Technique.” 2022 9th International Confer-
ence on Condition Monitoring and Diagnosis
(CMD), Kitakyushu, Japan: 309–313. https://doi.
org/10.23919/CMD54214.2022.9991508.
50. Feng, M., L.-J. Deng, F. Chen, M. Perc, and
J. Kurths. 2020. “The accumulative law and its
probability model: an extension of the Pareto
distribution and the log-normal distribution.”
Proceedings of the Royal Society A: Mathe-
matical, Physical, and Engineering Sciences
476 (2237): 20200019. https://doi.org/10.1098/
rspa.2020.0019.
51. Kadir, D. H., and A. R. K. Rahi. 2023.
“Applying the Bayesian Technique in Designing
a Single Sampling Plan.” Cihan University-Erbil
Scientific Journal 7 (2): 17–25. https://doi.
org/10.24086/cuesj.v7n2y2023.pp17-25.
52. Haldar, A., and S. Mahadevan. 1995. “First-
Order and Second-Order Reliability Methods.”
In Probabilistic Structural Mechanics Handbook,
pp. 27–52. Sundararajan, C. (ed.). Boston, MA:
Springer US. https://doi.org/10.1007/978-1-4615-
1771-9_3.
53. El-Reedy, M. A. Reinforced Concrete Struc-
tural Reliability. 2012. Boca Raton, FL: CRC
Press. https://doi.org/10.1201/b12978.
54. Zhu, S., and T. Xiang. 2021. “Dynamic Reli-
ability Evaluation by First-Order Reliability
Method Integrated with Stochastic Pseudo Exci-
tation Method.” International Journal of Struc-
tural Stability and Dynamics 21 (2): 2150024.
https://doi.org/10.1142/S0219455421500243.
55. Gonzalez, O., S. Rodriguez, R. Perez-Jimenez,
B. R. Mendoza, and A. Ayala. 2005. “Error
Analysis of the Simulated Impulse Response on
Indoor Wireless Optical Channels Using a Monte
Carlo-Based Ray-Tracing Algorithm.” IEEE
Transactions on Communications 53 (1): 124–30.
https://doi.org/10.1109/TCOMM.2004.840625.
56. Yang, S., D. Meng, H. Yang, C. Luo, and
X. Su. 2025. “Enhanced soft Monte Carlo simu-
lation coupled with support vector regression
for structural reliability analysis.” Proceedings of
the Institution of Civil Engineers: Transport (Jan):
1–16. https://doi.org/10.1680/jtran.24.00128.
57. Faraji, J., M. Aslani, H. Hashemi-Dezaki,
A. Ketabi, Z. De Grève, and F. Vallée. 2024.
“Reliability Analysis of Cyber–Physical Energy
Hubs: A Monte Carlo Approach.” IEEE Transac-
tions on Smart Grid 15 (1): 848–62. https://doi.
org/10.1109/TSG.2023.3270821.
58. Liu, X.-X., J.-J. Xiao, and K. Lu. May 2024.
“Reliability and sensitivity analysis of delam-
ination growth of composite laminate struc-
tures using two efficient sampling methods.”
AIP Advances 14 (5): 055020. https://doi.
org/10.1063/5.0210827.
59. Kirkup, L., and R. B. Frenkel. 2006. An intro-
duction to uncertainty in measurement: using
the GUM (guide to the expression of uncertainty
in measurement). Cambridge University Press.
https://doi.org/10.1017/CBO9780511755538.
A U G U S T 2 0 2 5 M AT E R I A L S E V A L U AT I O N 37
Previous Page Next Page