structural reliability, and process
control.
Nonetheless, challenges remain
in standardizing UA&UQ methods,
improving AI model interpretability,
and integrating hybrid physics and AI
uncertainty models. Future research
should focus on scalable real-time UQ,
uncertainty-aware autonomous NDE,
and digital twin–driven predictive main-
tenance. These innovations will set new
benchmarks for automation, reliabil-
ity, and safety, ultimately enabling fully
automated, uncertainty-aware inspec-
tions for cost-effective and risk-informed
decision-making.
AUTHORS
Zi Li: Assistant Professor, Department of Physics
and Engineering, Alma College, Alma, MI
Department of Electrical and Computer Engi-
neering, Michigan State University, MI liz@
alma.edu lizi4@msu.edu
Yiming Deng: Professor, Nondestructive Evalu-
ation Laboratory, Department of Electrical and
Computer Engineering, Michigan State Univer-
sity, East Lansing, MI dengyimi@egr.msu.edu
Materials Evaluation 83 (8): 24–39
https://doi.org/10.32548/2025.me-04541
©2025 American Society for Nondestructive Testing
REFERENCES
1. Taheri, H., and A. S. Beni. First online
6 January 2025. “Artificial Intelligence, Machine
Learning, and Smart Technologies for Nonde-
structive Evaluation.” In Handbook of Nonde-
structive Evaluation 4.0, pp. 1–29. Meyendorf,
N., N. Ida, R. Singh, and J. Vrana (eds.). Springer
Cham. https://doi.org/10.1007/978-3-030-48200-
8_70-1.
2. Meyendorf, N., N. Ida, R. Singh, and J.
Vrana (eds.). 2021. Handbook of Nondestructive
Evaluation 4.0. Springer Cham. https://doi.
org/10.1007/978-3-030-73206-6.
3. Jaber, A., S. S. Karganroudi, M. S. Meiabadi,
A. Aminzadeh, H. Ibrahim, M. Adda, and
H. Taheri. 2022. “On Smart Geometric
Non-Destructive Evaluation: Inspection
Methods, Overview, and Challenges.” Materials
(Basel) 15 (20): 7187. https://doi.org/10.3390/
ma15207187.
4. Fong, J. T., N. A. Heckert, J. J. Filliben, and S.
R. Doctor. 2018. “Three Approaches to Quan-
tification of NDE Uncertainty and a Detailed
Exposition of the Expert Panel Approach Using
the Sheffield Elicitation Framework.” in Volume
1A: Codes and Standards: V01AT01A007. ASME
2018 Pressure Vessels and Piping Conference,
Prague, Czech Republic, 15–20 July 2018. https://
doi.org/10.1115/PVP2018-84771.
5. Potukuchi, S., V. Chinthapenta, and G. Raju.
2023. “A review of NDE techniques for hydro-
gels.” Nondestructive Testing and Evaluation 38
(1): 1–33. https://doi.org/10.1080/10589759
.2022.2144304.
6. Bøving, K. G. 1989. NDE handbook:
non-destructive examination methods for
condition monitoring. London, Boston:
Butterworths.
7. Vejdannik, M., A. Sadr, V. H. C. de Albu-
querque, and J. M. R. S. Tavares. First online
28 June 2018. “Signal Processing for NDE.” In
Handbook of Advanced Non-Destructive Evalua-
tion, pp. 1–19. Ida, N., and N. Meyendorf (eds.).
Springer Cham. https://doi.org/10.1007/978-3-
319-30050-4_53-1.
8. Bertovic, M. 2015. “Human factors in
non-destructive testing (NDT): risks and chal-
lenges of mechanised NDT.” Doctoral thesis.
Technische Universität Berlin. https://doi
.org/10.14279/depositonce-4685.
9. Dann, M. R., and L. Huyse. 2018. “The
effect of inspection sizing uncertainty on the
maximum corrosion growth in pipelines.” Struc-
tural Safety 70: 71–81. https://doi.org/10.1016/j.
strusafe.2017.10.005.
10. Aldrin, J., D. Motes, M. Hughes, D. Forsyth,
E. Sabbagh, H. A. Sabbagh, R. K. Murphy, G.
Nuxoll, C. Knott, and E. A. Lindgren. 2025.
“Uncertainty Evaluation of Crack Sizing Capa-
bility Incorporating Model-Based Inversion
Applied to Bolt-Hole Eddy Current Inspections.”
Materials Evaluation 83 (8): 42–56.
11. Knott, C., C. S. Kabban, and J. Aldrin.
2025. “Multivariate Probability of Detection
Modeling Including Categorical Variables and
Higher-Order Response Models.” Materials Eval-
uation 83 (8): 57–72.
12. Tomizawa, T., and N. Yusa. 2025. “Proba-
bilistic Sizing of a Fatigue Crack on Type 304
Austenitic Stainless Steel from Eddy Current
Signals.” Materials Evaluation 83 (8): 73–80.
13. Chiachío, M., M. Megía, J. Chiachío, J.
Fernandez, and M. L. Jalón. 2022. “Structural
digital twin framework: Formulation and tech-
nology integration.” Automation in Construc-
tion 140: 104333. https://doi.org/10.1016/j.
autcon.2022.104333.
14. Li, Z. 2023. Uncertainty Quantification
Framework with Interdependent Dynamics of
Data, Modeling, and Learning in Nondestructive
Evaluation. Doctoral thesis. Michigan State
University. https://doi.org/10.25335/34mn-bn95.
15. Ceberio, J., J.-C. Cortés, F. Fernández de
Vega, O. Garnica, J. I. Hidalgo, J. M. Velasco, and
R.-J. Villanueva. 2022. “Approaching epistemic
and aleatoric uncertainty with evolutionary opti-
mization: examples and challenges.” Proceedings
of the 2022 Genetic and Evolutionary Computa-
tion Conference Companion: 1909–1915. https://
doi.org/10.1145/3520304.3533978.
16. Depeweg, S., J. M. Hernández-Lobato, F.
Doshi-Velez, and S. Udluft. 2018. “Decomposi-
tion of Uncertainty in Bayesian Deep Learning
for Efficient and Risk-sensitive Learning.” arXiv.
https://doi.org/10.48550/arXiv.1710.07283.
17. Charpentier, B., R. Senanayake, M. Kochen-
derfer, and S. Günnemann. 2022. “Disentan-
gling Epistemic and Aleatoric Uncertainty in
Reinforcement Learning.” arXiv. https://doi.
org/10.48550/arXiv.2206.01558.
18. Zschocke, S., W. Graf, and M. Kaliske. 2023.
“Incorporating uncertainty in stress-strain data
acquisition: Extended model-free data-driven
identification.” Proceedings in Applied Math-
ematics and Mechanics 23 (2): e202300008.
https://doi.org/10.1002/pamm.202300008.
19. Li, A., A. D. Parsekian, D. Grana, and B. J.
Carr. May 2025. “Quantification of measurement
uncertainty in electrical resistivity tomography
data and its effect on the inverted resistivity
model.” Geophysics 90 (3): WA275–91. https://
doi.org/10.1190/geo2024-0466.1.
20. Abebe, M., Y. Cho, S. C. Han, and B. Koo.
2024. “Mitigating Measurement Inaccuracies
in Digital Twins of Construction Machinery
through Multi-Objective Optimization.” Sensors
(Basel) 24 (11): 3347. https://doi.org/10.3390/
s24113347.
21. Herrera, P., C. Goyne, and R. Rockwell. 2024.
“Propagation of uncertainty in experimental
dynamic coefficients of fluid film journal
bearings.” Journal of Tribology 146 (7): 074501.
https://doi.org/10.1115/1.4065002.
22. Momeni, H., and A. Ebrahimkhanlou. 2022.
“High-dimensional data analytics in struc-
tural health monitoring and non-destructive
evaluation: A review paper.” Smart Materials
and Structures 31 (4): 043001. https://doi.
org/10.1088/1361-665X/ac50f4.
23. Jasiūnienė, E., B. Yilmaz, D. Smagulova,
G. A. Bhat, V. Cicėnas, E. Žukauskas, and L.
Mažeika. 2022. “Non-Destructive Evaluation of
the Quality of Adhesive Joints Using Ultrasound,
X-ray, and Feature-Based Data Fusion.” Applied
Sciences (Basel, Switzerland) 12 (24): 12930.
https://doi.org/10.3390/app122412930.
24. Li, Z., and Y. Deng. 2024. “Quantifying
predictive uncertainty in damage classifi-
cation for nondestructive evaluation using
Bayesian approximation and deep learning.”
Inverse Problems 40 (4): 045031. https://doi.
org/10.1088/1361-6420/ad2f63.
25. Huang, P., Z. Bao, R. Huang, J. Jia, K. Liu,
X. Yu, W. Yin, and Y. Xie. 2023. “Decoupling
Permeability, Conductivity, Thickness, Lift-Off
for Eddy Current Testing Using Machine
Learning.” IEEE Transactions on Instrumenta-
tion and Measurement 72: 1–10. https://doi.
org/10.1109/TIM.2023.3293565.
26. Wang, J., E. Li, J. Wu, and X. Xu. 2021.
“Linearization of the lift-off effect for magnetic
flux leakage based on Fourier transform.”
Measurement Science &Technology 32 (6):
065012. https://doi.org/10.1088/1361-6501/
abe89e.
27. Qian, Y., H. Wan, B. Yang, J.-C. Golaz, B.
Harrop, Z. Hou, V. E. Larson, L. R. Leung, G. Lin,
W. Lin, P.-L. Ma, H.-Y. Ma, P. Rasch, B. Singh, H.
Wang, S. Xie, and K. Zhang. 2018. “Parametric
Sensitivity and Uncertainty Quantification
in the Version 1 of E3SM Atmosphere Model
Based on Short Perturbed Parameter Ensemble
Simulations.” Journal of Geophysical Research:
Atmospheres 123 (23): 13046–13073. https://doi.
org/10.1029/2018JD028927.
NDT TUTORIAL
|
UA&UQ
36
M AT E R I A L S E V A L U AT I O N • A U G U S T 2 0 2 5
control.
Nonetheless, challenges remain
in standardizing UA&UQ methods,
improving AI model interpretability,
and integrating hybrid physics and AI
uncertainty models. Future research
should focus on scalable real-time UQ,
uncertainty-aware autonomous NDE,
and digital twin–driven predictive main-
tenance. These innovations will set new
benchmarks for automation, reliabil-
ity, and safety, ultimately enabling fully
automated, uncertainty-aware inspec-
tions for cost-effective and risk-informed
decision-making.
AUTHORS
Zi Li: Assistant Professor, Department of Physics
and Engineering, Alma College, Alma, MI
Department of Electrical and Computer Engi-
neering, Michigan State University, MI liz@
alma.edu lizi4@msu.edu
Yiming Deng: Professor, Nondestructive Evalu-
ation Laboratory, Department of Electrical and
Computer Engineering, Michigan State Univer-
sity, East Lansing, MI dengyimi@egr.msu.edu
Materials Evaluation 83 (8): 24–39
https://doi.org/10.32548/2025.me-04541
©2025 American Society for Nondestructive Testing
REFERENCES
1. Taheri, H., and A. S. Beni. First online
6 January 2025. “Artificial Intelligence, Machine
Learning, and Smart Technologies for Nonde-
structive Evaluation.” In Handbook of Nonde-
structive Evaluation 4.0, pp. 1–29. Meyendorf,
N., N. Ida, R. Singh, and J. Vrana (eds.). Springer
Cham. https://doi.org/10.1007/978-3-030-48200-
8_70-1.
2. Meyendorf, N., N. Ida, R. Singh, and J.
Vrana (eds.). 2021. Handbook of Nondestructive
Evaluation 4.0. Springer Cham. https://doi.
org/10.1007/978-3-030-73206-6.
3. Jaber, A., S. S. Karganroudi, M. S. Meiabadi,
A. Aminzadeh, H. Ibrahim, M. Adda, and
H. Taheri. 2022. “On Smart Geometric
Non-Destructive Evaluation: Inspection
Methods, Overview, and Challenges.” Materials
(Basel) 15 (20): 7187. https://doi.org/10.3390/
ma15207187.
4. Fong, J. T., N. A. Heckert, J. J. Filliben, and S.
R. Doctor. 2018. “Three Approaches to Quan-
tification of NDE Uncertainty and a Detailed
Exposition of the Expert Panel Approach Using
the Sheffield Elicitation Framework.” in Volume
1A: Codes and Standards: V01AT01A007. ASME
2018 Pressure Vessels and Piping Conference,
Prague, Czech Republic, 15–20 July 2018. https://
doi.org/10.1115/PVP2018-84771.
5. Potukuchi, S., V. Chinthapenta, and G. Raju.
2023. “A review of NDE techniques for hydro-
gels.” Nondestructive Testing and Evaluation 38
(1): 1–33. https://doi.org/10.1080/10589759
.2022.2144304.
6. Bøving, K. G. 1989. NDE handbook:
non-destructive examination methods for
condition monitoring. London, Boston:
Butterworths.
7. Vejdannik, M., A. Sadr, V. H. C. de Albu-
querque, and J. M. R. S. Tavares. First online
28 June 2018. “Signal Processing for NDE.” In
Handbook of Advanced Non-Destructive Evalua-
tion, pp. 1–19. Ida, N., and N. Meyendorf (eds.).
Springer Cham. https://doi.org/10.1007/978-3-
319-30050-4_53-1.
8. Bertovic, M. 2015. “Human factors in
non-destructive testing (NDT): risks and chal-
lenges of mechanised NDT.” Doctoral thesis.
Technische Universität Berlin. https://doi
.org/10.14279/depositonce-4685.
9. Dann, M. R., and L. Huyse. 2018. “The
effect of inspection sizing uncertainty on the
maximum corrosion growth in pipelines.” Struc-
tural Safety 70: 71–81. https://doi.org/10.1016/j.
strusafe.2017.10.005.
10. Aldrin, J., D. Motes, M. Hughes, D. Forsyth,
E. Sabbagh, H. A. Sabbagh, R. K. Murphy, G.
Nuxoll, C. Knott, and E. A. Lindgren. 2025.
“Uncertainty Evaluation of Crack Sizing Capa-
bility Incorporating Model-Based Inversion
Applied to Bolt-Hole Eddy Current Inspections.”
Materials Evaluation 83 (8): 42–56.
11. Knott, C., C. S. Kabban, and J. Aldrin.
2025. “Multivariate Probability of Detection
Modeling Including Categorical Variables and
Higher-Order Response Models.” Materials Eval-
uation 83 (8): 57–72.
12. Tomizawa, T., and N. Yusa. 2025. “Proba-
bilistic Sizing of a Fatigue Crack on Type 304
Austenitic Stainless Steel from Eddy Current
Signals.” Materials Evaluation 83 (8): 73–80.
13. Chiachío, M., M. Megía, J. Chiachío, J.
Fernandez, and M. L. Jalón. 2022. “Structural
digital twin framework: Formulation and tech-
nology integration.” Automation in Construc-
tion 140: 104333. https://doi.org/10.1016/j.
autcon.2022.104333.
14. Li, Z. 2023. Uncertainty Quantification
Framework with Interdependent Dynamics of
Data, Modeling, and Learning in Nondestructive
Evaluation. Doctoral thesis. Michigan State
University. https://doi.org/10.25335/34mn-bn95.
15. Ceberio, J., J.-C. Cortés, F. Fernández de
Vega, O. Garnica, J. I. Hidalgo, J. M. Velasco, and
R.-J. Villanueva. 2022. “Approaching epistemic
and aleatoric uncertainty with evolutionary opti-
mization: examples and challenges.” Proceedings
of the 2022 Genetic and Evolutionary Computa-
tion Conference Companion: 1909–1915. https://
doi.org/10.1145/3520304.3533978.
16. Depeweg, S., J. M. Hernández-Lobato, F.
Doshi-Velez, and S. Udluft. 2018. “Decomposi-
tion of Uncertainty in Bayesian Deep Learning
for Efficient and Risk-sensitive Learning.” arXiv.
https://doi.org/10.48550/arXiv.1710.07283.
17. Charpentier, B., R. Senanayake, M. Kochen-
derfer, and S. Günnemann. 2022. “Disentan-
gling Epistemic and Aleatoric Uncertainty in
Reinforcement Learning.” arXiv. https://doi.
org/10.48550/arXiv.2206.01558.
18. Zschocke, S., W. Graf, and M. Kaliske. 2023.
“Incorporating uncertainty in stress-strain data
acquisition: Extended model-free data-driven
identification.” Proceedings in Applied Math-
ematics and Mechanics 23 (2): e202300008.
https://doi.org/10.1002/pamm.202300008.
19. Li, A., A. D. Parsekian, D. Grana, and B. J.
Carr. May 2025. “Quantification of measurement
uncertainty in electrical resistivity tomography
data and its effect on the inverted resistivity
model.” Geophysics 90 (3): WA275–91. https://
doi.org/10.1190/geo2024-0466.1.
20. Abebe, M., Y. Cho, S. C. Han, and B. Koo.
2024. “Mitigating Measurement Inaccuracies
in Digital Twins of Construction Machinery
through Multi-Objective Optimization.” Sensors
(Basel) 24 (11): 3347. https://doi.org/10.3390/
s24113347.
21. Herrera, P., C. Goyne, and R. Rockwell. 2024.
“Propagation of uncertainty in experimental
dynamic coefficients of fluid film journal
bearings.” Journal of Tribology 146 (7): 074501.
https://doi.org/10.1115/1.4065002.
22. Momeni, H., and A. Ebrahimkhanlou. 2022.
“High-dimensional data analytics in struc-
tural health monitoring and non-destructive
evaluation: A review paper.” Smart Materials
and Structures 31 (4): 043001. https://doi.
org/10.1088/1361-665X/ac50f4.
23. Jasiūnienė, E., B. Yilmaz, D. Smagulova,
G. A. Bhat, V. Cicėnas, E. Žukauskas, and L.
Mažeika. 2022. “Non-Destructive Evaluation of
the Quality of Adhesive Joints Using Ultrasound,
X-ray, and Feature-Based Data Fusion.” Applied
Sciences (Basel, Switzerland) 12 (24): 12930.
https://doi.org/10.3390/app122412930.
24. Li, Z., and Y. Deng. 2024. “Quantifying
predictive uncertainty in damage classifi-
cation for nondestructive evaluation using
Bayesian approximation and deep learning.”
Inverse Problems 40 (4): 045031. https://doi.
org/10.1088/1361-6420/ad2f63.
25. Huang, P., Z. Bao, R. Huang, J. Jia, K. Liu,
X. Yu, W. Yin, and Y. Xie. 2023. “Decoupling
Permeability, Conductivity, Thickness, Lift-Off
for Eddy Current Testing Using Machine
Learning.” IEEE Transactions on Instrumenta-
tion and Measurement 72: 1–10. https://doi.
org/10.1109/TIM.2023.3293565.
26. Wang, J., E. Li, J. Wu, and X. Xu. 2021.
“Linearization of the lift-off effect for magnetic
flux leakage based on Fourier transform.”
Measurement Science &Technology 32 (6):
065012. https://doi.org/10.1088/1361-6501/
abe89e.
27. Qian, Y., H. Wan, B. Yang, J.-C. Golaz, B.
Harrop, Z. Hou, V. E. Larson, L. R. Leung, G. Lin,
W. Lin, P.-L. Ma, H.-Y. Ma, P. Rasch, B. Singh, H.
Wang, S. Xie, and K. Zhang. 2018. “Parametric
Sensitivity and Uncertainty Quantification
in the Version 1 of E3SM Atmosphere Model
Based on Short Perturbed Parameter Ensemble
Simulations.” Journal of Geophysical Research:
Atmospheres 123 (23): 13046–13073. https://doi.
org/10.1029/2018JD028927.
NDT TUTORIAL
|
UA&UQ
36
M AT E R I A L S E V A L U AT I O N • A U G U S T 2 0 2 5