to nonexistent or inaccurate results, but overfitting can be
avoided by monitoring when ​​ a​ is smaller than ​​ ​2​​ and when
AIC and BIC values increase (rather than decrease) as more
variables are included. Additionally, potential inflation of
parameter variances can be reduced by centering interaction
and higher-order terms in the model. Future work is planned
to investigate other NDE techniques and demonstrate how this
process can be applied to more complex inspection scenar-
ios. More realistic and complex simulations are also planned
to explore how these methods affect estimates of the critical
values (​​ 50​​​ ​​ 90​​​ and ​​ 90/95​​​
EDITOR‘S NOTE
Appendices for this paper are available to download from the digital
edition.
REFERENCES
1. Berens, A. P. 1989. “NDE reliability data analysis.” In ASM Handbook,
9th ed., Vol. 17: 689–701. ASM International.
2. Hovey, P. W., and A. P. Berens. 1988. “Statistical Evaluation of NDE
Reliability in the Aerospace Industry,” in Review of Progress in Quantita-
tive Nondestructive Evaluation, eds. D. O. Thompson and D. E. Chimenti.
Boston, MA: Springer. https://doi.org/10.1007/978-1-4613-0979-6_108.
3. Cherry, M., and C. Knott. 2022. “What is probability of detection?” Mate-
rials Evaluation 80 (12): 24–28. https://doi.org/10.32548/2022.me-04324.
4. US Department of Defense. 2009. Department of Defense Handbook:
Nondestructive Evaluation System Reliability Assessment (MIL-HDBK-
1823A). Standardization Order Desk: Philadelphia, PA.
5. US Department of Defense. 2016. Department of Defense Standard
Practice: Aircraft Structural Integrity Program (MIL-STD-1530D). Standard-
ization Order Desk: Philadelphia, PA.
6. Annis, C. 2016. mh1823 POD (Probability of Detection) Software, Version
5.2.1.
7. Gohmann, C., T. Boehnlein, and C. Knott. 2023. POD (Probability of
Detection) Software, Version 4.5.
8. Hoppe, W. C. 2009. “Parametric probability of detection (POD) estima-
tion for eddy current crack detection.” 14th International Workshop on
Electromagnetic Nondestructive Evaluation. Dayton, OH.
9. Aldrin, J. C., J. S. Knopp, and H. A. Sabbagh. 2013. “Bayesian methods
in probability of detection estimation and model-assisted probability of
detection evaluation.” AIP Conference Proceedings 1511: 1733–1740. https://
doi.org/10.1063/1.4789250.
10. Shell, E. B., J. C. Aldrin, H. A. Sabbagh, E. Sabbagh, R. K. Murphy, S.
Mazdiyasni, and E. A. Lindgren. 2015. “Demonstration of model-based
inversion of electromagnetic signals for crack characterization.” AIP
Conference Proceedings 1650: 484–493. https://doi.org/10.1063/1.4914645.
11. Müller, C., and T. Öberg. 2004. “Strategy for Verification and Demon-
stration of the Sealing Process for Canisters for Spent Fuel.” SKB Report
R-04-56. https://skb.com/publication/22558.
12. Ronneteg, U., L. Cederqvist, H. Rydén, T. Öberg, and C. Müller. 2006.
“Reliability in sealing of canister for spent nuclear fuel.” SKB Report
R-06-26. https://www.skb.com/publication/1137244.
13. Aldrin, J. C., E. A. Medina, J. Santiago, E. A. Lindgren, C. F. Buynak,
and J. S. Knopp. 2012. “Demonstration study for reliability assessment
of SHM systems incorporating model-assisted probability of detection
approach.” AIP Conference Proceedings 1430: 1543–1550. https://doi.
org/10.1063/1.4716398.
14. Smart, L. J., B. J. Engle, L. J. Bond, J. MacKenzie, and G. Morris. 2016.
“Material characterization of pipeline steels: Inspection techniques review
and potential property relationships.” Proceedings of the 2016 11th Inter-
national Pipeline Conference. Vol. 3: Operations, Monitoring, and Mainte-
nance. https://doi.org/10.1115/IPC2016-64157.
15. Barrett, A., R. Smith, and M. Modarres. 2018. “A multivariate model
to assess the probability of detection and sizing of defects in aluminum
panels using eddy current inspections.” Engineering Failure Analysis 94:
182–194. https://doi.org/10.1016/j.engfailanal.2018.07.028.
16. Knott, C. E., C. S. Kabban, and J. C. Aldrin. 2023. “Simple and multiple
linear regression for probability of detection.” Proceedings SPIE 12491, 8th
International Workshop on Reliability of NDT/NDE: 1249103. https://doi.
org/10.1117/12.2660140.
17. Kutner, M. H., C. I. Nachtsheim, J. Neter, and W. Li. 2004. Applied
Linear Statistical Models. 5th ed. New York, NY: McGraw-Hill-Irwin.
18. Montgomery, D. C. 2017. Design and Analysis of Experiments. 9th ed.
New York: John Wiley.
19. Casella, G., and R. Berger. 2001. Statistical Inference. 2nd ed. Boston,
MA: Cengage Learning.
20. Box, G. E. P., and D. R. Cox. 1964. “An analysis of transformations.”
Journal of the Royal Statistical Society: Series B, Statistical Methodology 26
(2): 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.
21. Milliard, S. P. 2025. “boxcox: Boxcox Power Transformation.” Accessed
29 June 2025. https://www.rdocumentation.org/packages/EnvStats/
versions/3.0.0/topics/boxcox.
22. Stroup, W. W. 2013. Generalized Linear Mixed Models: Modern
Concepts, Methods and Applications. Boca Raton, FL: Taylor &Francis
Group LLC.
23. James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction
to Statistical Learning with Applications in R. New York: Springer.
24. Therneau, T. M. 2023. A Package for Survival Analysis in R, R package
Version 3.5-5. https://CRAN.R-project.org/package=survival [in Appendix].
25. Truxillo, C. 2012. Statistical Analysis with the GLIMMIX Procedure:
Course Notes. Cary, NC: SAS Institute Inc. [in Appendix].
ME
|
PODMODELING
72
M AT E R I A L S E V A L U AT I O N A U G U S T 2 0 2 5
Appendix A: Sums of Variances and Covariances
Given the variance-covariance matrix of the parameters of a linear model (Equation 43), variance and covariances of sums
of those coefficients are calculable [17, 19].
(43) ?(𝛃) =
[
Var(β0) Cov(β0, β1) Cov(β0, β2) Cov(β0, σε)
Cov(β0, β1) Var(β1) Cov(β1, β2) Cov(β1, σε)
Cov(β2, β0) Cov(β2, β1) Var(β2) Cov(β2, σε)

Cov(β0, σε) Cov(β1, σε) Cov(β2, σε) Var(σε) ]
For any coefficients β0 through β𝑘, the variance of their sums is the sum of their variances plus the sum of each
covariance pair:
(44) Var(β0 +β1 +··· +β𝑘) =Var(β0) +
Cov(β0, β1) +··· +Cov(β0, β𝑘) +Cov(β1, β0) +
Var(β1) +··· +Cov(β1, β𝑘) +Cov(β𝑘, β0) +
Cov(β𝑘, β1) +··· +Var(β𝑘)
The off-diagonal covariance terms for ?(𝛃) can be calculated using the sum of the unique covariance pairs. For
example, consider the covariance between two variables ? and ? with scalar 𝑘:
(45) Var(? +𝑘?) =Var(?) +𝑘2Var(?) +
2𝑘Cov(?, ?)
Cov(?, 𝑘?) =0.5 (
Var(? +𝑘?) Var(?)
𝑘2Var(?) )=
0.5 (
Var(?) +𝑘2Var(?) +2𝑘Cov(?, ?)
Var(?) 𝑘2Var(?) )=
𝑘Cov(?, ?)
If the coefficients are ? =?1 +?2 +?3 and ? =?1 +?2 +?3, then the proof is more complicated:
(46) Var(?1 +?2 +?3, ?1 +?2 +?3) =
Var(?1 +?2 +?3) +Var(?1 +?2 +?3) +
2Cov(?1 +?2 +?3, ?1 +?2 +?3)
(47) Cov(?1 +?2 +?3, ?1 +?2 +?3) =
0.5(Var(?1 +?2 +?3 +?1 +?2 +?3))
Var(?1 +?2 +?3) Var(?1 +?2 +?3)) =
0.5(Var(?1 +?2 +?3 +?1 +?2 +?3))
Var(?1 +?2 +?3) Var(?1 +?2 +?3) =
0.5(Var(?1) +Var(?2) +Var(?3) +Var(?1) +
Var(?2) +Var(?3) +2Cov(?1, ?2) +2Cov(?1, ?3) +
2Cov(?2, ?3) +2Cov(?1, ?1) +2Cov(?1, ?2) +
2Cov(?1, ?3) +2Cov(?2, ?1) +2Cov(?2, ?2) +
2Cov(?2, ?3) +2Cov(?3, ?1) +2Cov(?3, ?2) +
2Cov(?3, ?3) +2Cov(?1, ?2) +2Cov(?1, ?3) +
2Cov(?2, ?3) Var(?1) Var(?2) Var(?3))
Previous Page Next Page