Lan, X., B. Hu, S. Wang, W. Luo, and P. Fu. 2022. “Magnetic charac-
teristics and mechanism of 304 austenitic stainless steel under fatigue
loading.” Engineering Failure Analysis 136: 106182. https://doi.org/10.1016/j.
engfailanal.2022.106182.
Rosell, A., and G. Persson. 2012. “Finite element modelling of closed
cracks in eddy current testing.” International Journal of Fatigue 41: 30–38.
https://doi.org/10.1016/j.ijfatigue.2011.12.003.
Shimamoto, A., H. Ohkawara, S. Yang, D. Choi, and S. Akamatsu.
2008. “Damage evaluation using magnetic properties in stainless steels
under biaxial stress.” Materials Transactions 49 (3): 548–53. https://doi.
org/10.2320/matertrans.MRA2007245.
Tanaka, M., and H. Tsuboi. 2001. “Finite element model of natural crack
in eddy current testing problem.” IEEE Transactions on Magnetics 37 (5):
3125–28. https://doi.org/10.1109/20.952558.
Thompson, R. B. 1996. “Laboratory nondestructive evaluation technology
for materials characterization.” Journal of Nondestructive Evaluation 15
(3–4): 163–76. https://doi.org/10.1007/BF00732043.
Tomizawa, T., and N. Yusa. 2024. “Bayesian data fusion of eddy current
testing for flaw characterization with uncertainty evaluation.” NDT &E
International 141: 102996. https://doi.org/10.1016/j.ndteint.2023.102996.
Uchimoto, T., T. Takagi, K. Ohtaki, Y. Takeda, and A. Kawakami. 2012.
“Electromagnetic modeling of fatigue cracks in plant environment for eddy
current testing.” International Journal of Applied Electromagnetics and
Mechanics 39 (1–4): 261–68. https://doi.org/10.3233/JAE-2012-1469.
Wang, J., N. Yusa, H. Pan, M. Kemppainen, I. Virkkunen, and H. Hashi-
zume. 2013. “Discussion of modeling of thermal fatigue cracks in numer-
ical simulation based on eddy current signals.” NDT &E International 55:
96–101. https://doi.org/10.1016/j.ndteint.2013.01.012.
Xie, S., L. Wei, Z. Tong, H. Chen, Z. Chen, T. Uchimoto, and T. Takagi. 2018.
“Influence of plastic deformation and fatigue damage on electromagnetic
properties of 304 austenitic stainless steel.” IEEE Transactions on Magnetics
54 (8): 1–10. https://doi.org/10.1109/TMAG.2018.2819123.
Yusa, N., Z. Chen, K. Miya, T. Uchimoto, and T. Takagi. 2003. “Large-scale
parallel computation for the reconstruction of natural stress corrosion
cracks from eddy current testing signals.” NDT &E International 36 (7):
449–59. https://doi.org/10.1016/S0963-8695(03)00067-7.
Yusa, N., L. Janousek, M. Rebican, Z. Chen, K. Miya, N. Dohi, N. Chigusa,
and Y. Matsumoto. 2006. “Caution when applying eddy current inversion
to stress corrosion cracking.” Nuclear Engineering and Design 236 (2):
211–21. https://doi.org/10.1016/j.nucengdes.2005.06.016.
Yusa, N., H. Huang, and K. Miya. 2007a. “Numerical evaluation of the
ill-posedness of eddy current problems to size real cracks.” NDT &E Inter-
national 40 (3): 185–91. https://doi.org/10.1016/j.ndteint.2006.10.012.
Yusa, N., S. Perrin, K. Mizuno, and K. Miya. 2007b. “Numerical modeling
of general cracks from the viewpoint of eddy current simulations.” NDT &
E International 40 (8): 577–83. https://doi.org/10.1016/j.ndteint.2007.04.002.
Yusa, N., and H. Hashizume. 2009. “Evaluation of stress corrosion cracking
as a function of its resistance to eddy currents.” Nuclear Engineering and
Design 239 (12): 2713–18. https://doi.org/10.1016/j.nucengdes.2009.08.032.
Yusa, N., and H. Hashizume. 2017. “Numerical investigation of the ability
of eddy current testing to size surface breaking cracks.” Nondestructive
Testing and Evaluation 32 (1): 50–58. https://doi.org/10.1080/10589759
.2015.1135918.
ME
|
FATIGUECRACKS
80
M AT E R I A L S E V A L U AT I O N • A U G U S T 2 0 2 5
teristics and mechanism of 304 austenitic stainless steel under fatigue
loading.” Engineering Failure Analysis 136: 106182. https://doi.org/10.1016/j.
engfailanal.2022.106182.
Rosell, A., and G. Persson. 2012. “Finite element modelling of closed
cracks in eddy current testing.” International Journal of Fatigue 41: 30–38.
https://doi.org/10.1016/j.ijfatigue.2011.12.003.
Shimamoto, A., H. Ohkawara, S. Yang, D. Choi, and S. Akamatsu.
2008. “Damage evaluation using magnetic properties in stainless steels
under biaxial stress.” Materials Transactions 49 (3): 548–53. https://doi.
org/10.2320/matertrans.MRA2007245.
Tanaka, M., and H. Tsuboi. 2001. “Finite element model of natural crack
in eddy current testing problem.” IEEE Transactions on Magnetics 37 (5):
3125–28. https://doi.org/10.1109/20.952558.
Thompson, R. B. 1996. “Laboratory nondestructive evaluation technology
for materials characterization.” Journal of Nondestructive Evaluation 15
(3–4): 163–76. https://doi.org/10.1007/BF00732043.
Tomizawa, T., and N. Yusa. 2024. “Bayesian data fusion of eddy current
testing for flaw characterization with uncertainty evaluation.” NDT &E
International 141: 102996. https://doi.org/10.1016/j.ndteint.2023.102996.
Uchimoto, T., T. Takagi, K. Ohtaki, Y. Takeda, and A. Kawakami. 2012.
“Electromagnetic modeling of fatigue cracks in plant environment for eddy
current testing.” International Journal of Applied Electromagnetics and
Mechanics 39 (1–4): 261–68. https://doi.org/10.3233/JAE-2012-1469.
Wang, J., N. Yusa, H. Pan, M. Kemppainen, I. Virkkunen, and H. Hashi-
zume. 2013. “Discussion of modeling of thermal fatigue cracks in numer-
ical simulation based on eddy current signals.” NDT &E International 55:
96–101. https://doi.org/10.1016/j.ndteint.2013.01.012.
Xie, S., L. Wei, Z. Tong, H. Chen, Z. Chen, T. Uchimoto, and T. Takagi. 2018.
“Influence of plastic deformation and fatigue damage on electromagnetic
properties of 304 austenitic stainless steel.” IEEE Transactions on Magnetics
54 (8): 1–10. https://doi.org/10.1109/TMAG.2018.2819123.
Yusa, N., Z. Chen, K. Miya, T. Uchimoto, and T. Takagi. 2003. “Large-scale
parallel computation for the reconstruction of natural stress corrosion
cracks from eddy current testing signals.” NDT &E International 36 (7):
449–59. https://doi.org/10.1016/S0963-8695(03)00067-7.
Yusa, N., L. Janousek, M. Rebican, Z. Chen, K. Miya, N. Dohi, N. Chigusa,
and Y. Matsumoto. 2006. “Caution when applying eddy current inversion
to stress corrosion cracking.” Nuclear Engineering and Design 236 (2):
211–21. https://doi.org/10.1016/j.nucengdes.2005.06.016.
Yusa, N., H. Huang, and K. Miya. 2007a. “Numerical evaluation of the
ill-posedness of eddy current problems to size real cracks.” NDT &E Inter-
national 40 (3): 185–91. https://doi.org/10.1016/j.ndteint.2006.10.012.
Yusa, N., S. Perrin, K. Mizuno, and K. Miya. 2007b. “Numerical modeling
of general cracks from the viewpoint of eddy current simulations.” NDT &
E International 40 (8): 577–83. https://doi.org/10.1016/j.ndteint.2007.04.002.
Yusa, N., and H. Hashizume. 2009. “Evaluation of stress corrosion cracking
as a function of its resistance to eddy currents.” Nuclear Engineering and
Design 239 (12): 2713–18. https://doi.org/10.1016/j.nucengdes.2009.08.032.
Yusa, N., and H. Hashizume. 2017. “Numerical investigation of the ability
of eddy current testing to size surface breaking cracks.” Nondestructive
Testing and Evaluation 32 (1): 50–58. https://doi.org/10.1080/10589759
.2015.1135918.
ME
|
FATIGUECRACKS
80
M AT E R I A L S E V A L U AT I O N • A U G U S T 2 0 2 5