and parts. Future direction and recommendations of research in this field include improving SNR by reducing undesired influence of environmental and systems factors, integration of complementary monitoring techniques such as X-ray to facili- tate subsurface defect monitoring, and surface-sensitive optical detection approaches. Integrating other measurement tech- niques with AET in a combined approach reduces signal devi- ations caused by other variations in the process and improves the reliability in detecting process abnormalities that lessen the quality of the AM components. Lastly, a comprehensive study on an inclusive model of effect, optimization, and sensitivity of multiple process parameters on the final AM part quality is required for successful implementation of this technique in the AM industry. REFERENCES Addin, O., S. M. Sapuan, E. Mahdi, and M. Othman. 2007. “A Naïve-Bayes classifier for damage detection in engineering materials.” Materials &Design 28 (8): 2379–86. https://doi.org/10.1016/j.matdes.2006.07.018. Arntz, D., D. Petring, S. Stoyanov, N. Quiring, and R. Poprawe. 2018. “Quantitative study of melt flow dynamics inside laser cutting kerfs by in-situ high-speed video-diagnostics.” Procedia CIRP 74:640–44. https:// doi.org/10.1016/j.procir.2018.08.057. ASTM. 2020. ASTM-E750: Standard Practice for Characterizing Acoustic Emission Instrumentation. ASTM International. West Conshohocken, PA. Baechle-Clayton, M., E. Loos, M. Taheri, and H. Taheri. 2022. “Failures and Flaws in Fused Deposition Modeling (FDM) Additively Manufac- tured Polymers and Composites.” Journal of Composites Science 6 (7): 202. https://doi.org/10.3390/jcs6070202. Bond, L. J., L. W. Koester, and H. Taheri. 2019. “NDE in-process for metal parts fabricated using powder based additive manufacturing.” Proceedings Vol. 10973, Smart Structures and NDE for Energy Systems and Industry 4.0. https://doi.org/10.1117/12.2520611. Brunton, S. L., B. R. Noack, and P. Koumoutsakos. 2020. “Machine learning for fluid mechanics.” Annual Review of Fluid Mechanics 52 (1): 477–508. https://doi.org/10.1146/annurev-fluid-010719-060214. Calta, N. P., J. Wang, A. M. Kiss, A. A. Martin, P. J. Depond, G. M. Guss, V. Thampy, et al. 2018. “An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes.” Review of Scientific Instruments 89 (5): 055101. https://doi. org/10.1063/1.5017236. CNDE (Center for Nondestructive Evaluation), Iowa State University. 2023. “Acoustic Emission Signal Features.” https://www.nde-ed.org/NDETech niques/AcousticEmission/AE_SignalFeatures.xhtml. Accessed 6 June 2023. Gobert, C., E. W. Reutzel, J. Petrich, A. R. Nassar, and S. Phoha. 2018. “Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging.” Additive Manufacturing 21:517–28. https://doi.org/10.1016/j. addma.2018.04.005. Grasso, M., and B. M. Colosimo. 2017. “Process defects and in situ moni- toring methods in metal powder bed fusion: A review.” Measurement Science &Technology 28 (4). https://doi.org/10.1088/1361-6501/aa5c4f. Herzog, T., M. Brandt, A. Trinchi, A. Sola, and A. Molotnikov. 2023. “Process monitoring and machine learning for defect detection in laser- based metal additive manufacturing.” Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-023-02119-y. Hossain, M. S., and H. Taheri. 2021a. “In-situ process monitoring for metal additive manufacturing through acoustic techniques using wavelet and convolutional neural network (CNN).” International Journal of Advanced Manufacturing Technology 116: 3473–88. https://doi.org/10.1007/s00170- 021-07721-z. Hossain, M. S., and H. Taheri. 2021b. “Application of data processing and machine learning techniques for in situ monitoring of metal additive manufacturing using acoustic emission data.” Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition. Volume 2B: Advanced Manufacturing. https://doi.org/10.1115/IMECE2021- 68835. Hossain, M. S., H. Taheri, N. Pudasaini, A. Reichenbach, and B. Silwal. 2020. “Ultrasonic nondestructive testing for in-line monitoring of wire-arc additive manufacturing (WAAM).” ASME 2020 Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition. Volume 2B: Advanced Manufacturing. https://doi.org/10.1115/IMECE2020- 23317. Hossain, M. S., M. Baniasadi, and H. Taheri. 2022. “Material character- isation of additive manufacturing titanium alloy (Titanium 6Al-4V) for quality control and properties evaluations.” Advances in Materials and Processing Technologies 8 (4): 4678–4697. https://doi.org/10.1080/2374 068X.2022.2079589. Jin, Z., Z. Zhang, and G. X. Gu. 2020. “Automated real‐time detection and prediction of interlayer imperfections in additive manufacturing processes using artificial intelligence.” Advanced Intelligent Systems 2 (1): 1900130. https://doi.org/10.1002/aisy.201900130. Knaak, C., L. Masseling, E. Duong, P. Abels, and A. Gillner. 2021. “Improving Build Quality in Laser Powder Bed Fusion Using High Dynamic Range Imaging and Model-Based Reinforcement Learning.” IEEE Access: Practical Innovations, Open Solutions 9:55214–31. https://doi. org/10.1109/ACCESS.2021.3067302. Koester, L. W, H. Taheri, L. J. Bond, and E. J. Faierson. 2019a. “Acoustic monitoring of additive manufacturing for damage and process condi- tion determination.” AIP Conference Proceedings 2102 (1). https://doi. org/10.1063/1.5099709. Koester, L. W., H. Taheri, T. A. Bigelow, L. J. Bond, and E. J. Faierson. 2018a. “In-situ acoustic signature monitoring in additive manu- facturing processes.” AIP Conference Proceedings 1949. https://doi. org/10.1063/1.5031503. Koester, L. W., H. Taheri, T. A. Bigelow, P. C. Collins, and L. J. Bond. 2018b. “Nondestructive testing for metal parts fabricated using powder-based additive manufacturing.” Materials Evaluation 76 (4): 514–24. Koester, L. W., L. J. Bond, H. Taheri, and P. C. Collins. 2019b. “Non-destructive evaluation of additively manufactured metallic parts: in-situ and post deposition.” Additive Manufacturing for the Aerospace Industry. Elsevier. Koester, L. W., L. J. Bond, P. C. Collins, H. Taheri, and T. A. Bigelow. 2018c. “Non-Destructive Evaluation of Additively Manufactured Metallic Parts.” In Metals Handbook. Vol. 17., 544–552. ASM International. Koester, L., H. Taheri, L. J. Bond, D. Barnard, and J. Gray. 2016. “Additive manufacturing metrology: State of the art and needs assessment.” AIP Conf. Proc. 1706. https://doi.org/10.1063/1.4940604. Kumar, S., T. Gopi, N. Harikeerthana, M. K. Gupta, V. Gaur, G. M. Krolczyk, and C. Wu. 2023. “Machine learning techniques in additive manufac- turing: A state of the art review on design, processes and production control.” Journal of Intelligent Manufacturing 34 (1): 21–55. https://doi. org/10.1007/s10845-022-02029-5. LearnOpenCV. 2023. “Understanding Convolutional Neural Networks (CNNs): A Complete Guide.” https://learnopencv.com/understanding-con volutional-neural-networks-cnn/. Accessed 6 June 2023. Lee, J., M. Hasanian, H. Saboonchi, M. Baechle, and H. Taheri. 2020. “Ultrasonic evaluation of polymer additively manufactured parts for defect inspection and structural integrity assessment.” Proc. SPIE 11380. Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIV. https://doi. org/10.1117/12.2572463. Li, H., Z. Yu, F. Li, Q. Kong, and J. Tang. 2022. “Real-time polymer flow state monitoring during fused filament fabrication based on acoustic emission.” Journal of Manufacturing Systems 62: 628–635. https://doi. org/10.1016/j.jmsy.2022.01.007. J U L Y 2 0 2 3 • M A T E R I A L S E V A L U A T I O N 59 2307 ME July dup.indd 59 6/19/23 3:41 PM
Li, K., T. Li, M. Ma, D. Wang, W. Deng, and H. Lu. 2021. “Laser cladding state recognition and crack defect diagnosis by acoustic emission signal and neural network.” Optics &Laser Technology 142:107161. https://doi. org/10.1016/j.optlastec.2021.107161. Liu, J., Y. Hu, B. Wu, and Y. Wang. 2018. “An improved fault diag- nosis approach for FDM process with acoustic emission.” Journal of Manufacturing Processes 35 (August): 570–79. https://doi.org/10.1016/j. jmapro.2018.08.038. Lott, P., H. Schleifenbaum, W. Meiners, K. Wissenbach, C. Hinke, and J. Bültmann. 2011. “Design of an optical system for the in situ process moni- toring of Selective Laser Melting (SLM).” Physics Procedia 12 (PART 1): 683–90. https://doi.org/10.1016/j.phpro.2011.03.085. Masinelli, G., S. Shevchik, V. Pandiyan, T. Quang-Le, and K. Wasmer. 2021. “Artificial intelligence for monitoring and control of metal additive manufacturing.” Industrializing Additive Manufacturing. Proceedings of AMPA2020: 205–220. https://doi.org/10.1007/978-3-030-54334-1_15. Mathieu, M., M. Henaff, and Y. LeCun. 2014. “Fast training of convo- lutional networks through FFTs.” arXiv:1312.5851 [cs.CV]. https://doi. org/10.48550/arXiv.1312.5851. Morales, R. E., K. J. Harke, J. W. Tringe, D. M. Stobbe, and T. W. Murray. 2022. “Real-time laser ultrasonic monitoring of laser-induced thermal processes.” Scientific Reports 12. https://doi.org/10.1038/s41598-022- 13940-5. Nam, J., N. Jo, J. S. Kim, and S. W. Lee. 2020. “Development of a health monitoring and diagnosis framework for fused deposition modeling process based on a machine learning algorithm.” Proceedings of the Insti- tution of Mechanical Engineers. Part B, Journal of Engineering Manufacture 234 (1–2): 324–32. https://doi.org/10.1177/0954405419855224. Ramalho, A., T. G. Santos, B. Bevans, Z. Smoqi, P. Rao, and J. P. Oliveira. 2022. “Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel.” Additive Manufacturing 51:102585. https://doi.org/10.1016/j.addma.2021.102585. Raplee, J., A. Plotkowski, M. M. Kirka, R. Dinwiddie, A. Okello, R. R. Dehoff, and S. S. Babu. 2017. “Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing.” Scientific Reports 7 (1): 43554. https://doi.org/10.1038/srep43554. Rosenblatt, F. 1958. “The perceptron: A probabilistic model for informa- tion storage and organization in the brain.” Psychological Review 65 (6): 386–408. https://doi.org/10.1037/h0042519. Scime, L., and J. Beuth. 2018. “Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm.” Additive Manufacturing 19:114–26. https://doi. org/https://doi.org/10.1016/j.addma.2017.11.009 https://doi.org/10.1016/j. addma.2017.11.009. Scipioni Bertoli, U., G. Guss, S. Wu, M. J. Matthews, and J. M. Schoenung. 2017. “In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manu- facturing.” Materials &Design 135:385–96. https://doi.org/10.1016/j. matdes.2017.09.044. Shevchik, S. A., C. Kenel, C. Leinenbach, and K. Wasmer. 2018. “Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks.” Additive Manufacturing 21:598– 604. https://doi.org/10.1016/j.addma.2017.11.012. Shevchik, S. A., G. Masinelli, C. Kenel, C. Leinenbach, and K. Wasmer. 2019. “Deep learning for in situ and real-time quality monitoring in additive manufacturing using acoustic emission.” IEEE Transactions on Industrial Informatics 15 (9): 5194–203. https://doi.org/10.1109/ TII.2019.2910524. Sutton, R. S., and A. G. Barto. 2018. Reinforcement Learning: An Introduc- tion. 2nd ed., The MIT Press. Taheri, H. 2018. “Nondestructive evaluation and in-situ monitoring for metal additive manufacturing.” Dissertation. Iowa State University. 61–75. Taheri, H., F. Delfanian, and J. Du. 2013. “Acoustic emission and ultra- sound phased array technique for composite material evaluation.” Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 1: Advances in Aerodynamics. https:// doi.org/10.1115/IMECE2013-62447. Taheri, H., L. W. Koester, T. A. Bigelow, E. J. Faierson, and L. J. Bond. 2019. “In Situ Additive Manufacturing Process Monitoring With an Acoustic Technique: Clustering Performance Evaluation Using K-Means Algorithm.” Journal of Manufacturing Science and Engineering 141 (4). https://doi. org/10.1115/1.4042786. Taheri, H., M. Gonzalez Bocanegra, and M. Taheri. 2022. “Artificial intelli- gence, machine learning and smart technologies for nondestructive evalu- ation.” Sensors 22 (11). https://doi.org/10.3390/s22114055. Taheri, H., M. R. M. Shoaib, L. W. Koester, T. A. Bigelow, P. C. Collins, and L. J. Bond. 2017. “Powder-based additive manufacturing -A review of types of defects, generation mechanisms, detection, property evaluation and metrology.” Int. J. Additive and Subtractive Materials Manufacturing 1 (2): 172–209. https://doi.org/10.1504/IJASMM.2017.088204. Taherkhani, K., C. Eischer, and E. Toyserkani. 2022. “An unsuper- vised machine learning algorithm for in-situ defect-detection in laser powder-bed fusion.” Journal of Manufacturing Processes 81:476–89. https:// doi.org/10.1016/j.jmapro.2022.06.074. Wasmer, K, C. Kenel, C. Leinenbach, and S. A. Shevchik. 2018. “In situ and real-time monitoring of powder-bed AM by combining acoustic emission and artificial intelligence.” Industrializing Additive Manufacturing-Proceedings of Additive Manufacturing in Products and Applications-AMPA2017, 200–209. https://doi.org/10.1007/978-3-319 -66866-6_20 Wasmer, K., T. Le-Quang, B. Meylan, and S. A. Shevchik. 2019. “In situ quality monitoring in AM using acoustic emission: A reinforcement learning approach.” Journal of Materials Engineering and Performance 28 (2): 666–72. https://doi.org/10.1007/s11665-018-3690-2. Wu, H., Y. Wang, and Z. Yu. 2016. “In situ monitoring of FDM machine condition via acoustic emission.” The International Journal of Advanced Manufacturing Technology 84: 1483–95. https://doi.org/10.1007/s00170-015 -7809-4. ME |AI/ML 60 M A T E R I A L S E V A L U A T I O N • J U L Y 2 0 2 3 2307 ME July dup.indd 60 6/19/23 3:41 PM
ASNT grants non-exclusive, non-transferable license of this material to . All rights reserved. © ASNT 2025. To report unauthorized use, contact: customersupport@asnt.org