evident, opening possibilities for innova-
tive NDT/E methods with applications
in industries such as infrastructure,
aerospace, and environmental moni-
toring. Applications in hard-to-access
inspection areas, advanced processes
for detecting undetectable discontinu-
ities, data management with reduced
dimensionality and size, and increased
autonomy are just a few areas where
bioinspiration can significantly impact
NDT/E technologies.
AUTHOR
Ehsan Dehghan-Niri: Intelligent Structures
and Non-destructive Evaluation laboratory, The
School of Manufacturing Systems and Networks,
Arizona State University nde@asu.edu
ACKNOWLEDGMENTS
Our bioinspired NDT research was supported
by the US National Science Foundation CAREER
Award under Grant No. 2320815. We would like
to extend our sincere appreciation to the Duke
Lemur Center (DLC) for their support through
the DBI-SABI award (Grant No. 2314898).
Additionally, we express our gratitude to the
dedicated research team at DLC, including
Dr. Erin Ehmke, Ms. Julie McKinney, Ms. Gabbi
Hirschkorn, and Ms. Alexis Sharp, for their
invaluable assistance in setting up this noninva-
sive behavioral study.
Although it is uncommon to acknowledge
animals in scientific publications, I would like to
take this opportunity to recognize two specific
aye-ayes from the DLC, Merlin and Medusa.
While I never had the chance to meet Merlin,
an article written by Dr. Erin Ehmke about him,
following his passing, sparked my interest in
bioinspired NDT. Merlin contributed to several
research projects at DLC, and even after his
death, his CT scan helped us better understand
the external auditory system of aye-ayes and
its impact on acoustic field measurements.
Medusa, a younger aye-aye at DLC, recently
assisted our team in collecting thermal images
of the tapping process, and we are grateful for
her contribution to our research.
CITATION
Materials Evaluation 83 (4): 28-33
https://doi.org/10.32548/2025.me-04490
©2025 American Society for Nondestructive
Testing
REFERENCES
1. Yang, Y., C. Ai, W. Chen, J. Zhen, X. Kong,
and Y. Jiang. 2023. “Recent advances in sources
of bio-inspiration and materials for robotics
and actuators.” Small Methods. https://doi.
org/10.1002/smtd.202300338.
2. Thewissen, J. G. M., and S. Nummela (eds.).
2008. Sensory evolution on the Threshold.
University of California Press.
3. Munoz, N. E., and D. T. Blumstein. January
2020. “Optimal multisensory integration.”
Behavioral Ecology 31 (1): 184–93. https://doi.
org/10.1093/beheco/arz175.
4. Mishra, S., Z. Yılmaz-Serçinoglu, ˘ H. Moradi,
D. Bhatt, C. I Kuru, and F. Ulucan-Karnak.
2023. “Recent advances in bioinspired sustain-
able sensing technologies.” Nano-Structures
&Nano-Objects. https://doi.org/10.1016/j.
nanoso.2023.100974.
5. Tang, W., Q. Yang, H. Xu, Y. Guo, J. Zhang, C.
Ouyang, L. Meng, and X. Liu. 2024. “Review of
bio-inspired image sensors for efficient machine
vision.” Advanced Photonics 6 (2). https://doi.
org/10.1117/1.AP.6.2.024001.
6. Zhao, Z., Q. Yang, R. Li, J. Yang, Q. Liu, B.
Zhu, C. Weng, et al. 2024. “A comprehen-
sive review on the evolution of bio-inspired
sensors from aquatic creatures.” Cell Reports
Physical Science. https://doi.org/10.1016/j.
xcrp.2024.102064.
7. Lenk, C., K. Ved, S. Durstewitz, T. Ivanov,
M. Ziegler, and P. Hövel. 2024. “Bio-inspired,
neuromorphic acoustic sensing.” Bio-Inspired
Information Pathways: 287–315. https://doi.
org/10.1007/978-3-031-36705-2_12.
8. del Valle, M. 2011. “Bioinspired sensor
systems.” Sensors. https://doi.org/10.3390/
s111110180.
9. Zhou, Y., Z. Yan, Y. Yang, Z. Wang, P. Lu, P.
Yuan, and B. He. 2024. “Bioinspired sensors
and applications in intelligent robots: a review.”
Robotic Intelligence and Automation. https://
doi.org/10.1108/RIA-07-2023-0088.
10. Liu, P., M. N. Huda, L. Sun, and H. Yu.
December 2020. “A survey on underactuated
robotic systems: Bio-inspiration, trajectory
planning and control.” Mechatronics 72:102443.
https://doi.org/10.1016/j.mechatronics
.2020.102443.
11. Ren, L., B. Li, G. Wei, K. Wang, Z. Song, Y.
Wei, L. Ren, and Q. Liu. 2021. “Biology and
bioinspiration of soft robotics: Actuation,
sensing, and system integration.” iScience 24 (9):
103075. https://doi.org/10.1016/j.isci.2021.103075.
12. Bergmann, J. B., D. Moatsou, U. Steiner,
and B. D. Wilts. 2022. “Bio-inspired materials
to control and minimise insect attachment.”
Bioinspiration &Biomimetics. https://doi.
org/10.1088/1748-3190/ac91b9.
13. Raibert, M., K. Blankespoor, G. Nelson, and
R. Playter. 2008. “BigDog, the rough-terrain
quadruped robot.” In Proceedings of the 17th
World Congress: 10822–10825.
14. Halder, S., K. Afsari, E. Chiou, R. Patrick,
and K. A. Hamed. April 2023. “Construction
inspection &monitoring with quadruped robots
in future human-robot teaming: A preliminary
study.” Journal of Building Engineering 65:105814.
https://doi.org/10.1016/j.jobe.2022.105814.
15. Lopez-Arreguin, A. J. R., and S. Montenegro.
2020. “Towards bio-inspired robots for under-
ground and surface exploration in planetary
environments: An overview and novel devel-
opments inspired in sand-swimmers,” Heliyon.
https://doi.org/10.1016/j.heliyon.2020.e04148.
16. Sun, J. Y., Y. W. Yan, F. D. Li, and Z. J. Zhang.
December 2021. “Generative design of bioin-
spired wings based on deployable hindwings
of Anomala Corpulenta Motschulsky.” Micron
(Oxford, England) 151:103150. https://doi.
org/10.1016/j.micron.2021.103150.
17. Prakash, A., A. R. Nair, H. Arunav, R. P. R.,
V. M. Akhil, C. Tawk, and K. V. Shankar. 2024.
“Bioinspiration and biomimetics in marine
robotics: a review on current applications and
future trends.” Bioinspiration &Biomimetics.
https://doi.org/10.1088/1748-3190/ad3265.
18. Youssef, S. M., M. Soliman, M. A. Saleh, M.
A. Mousa, M. Elsamanty, and A. G. Radwan.
2022. “Underwater soft robotics: a review of
bioinspiration in design, actuation, modeling,
and control.” Micromachines. https://doi.
org/10.3390/mi13010110.
19. Balakrishnan, S. 2010. “An numerical elastic
model for deforming bat pinnae.” Thesis.
https://doi.org/10.13140/RG.2.1.1936.8163.
20. Yin, X., P. Qiu, L. Yang, and R. Müller. 2017.
“Horseshoe bats and Old World leaf-nosed
bats have two discrete types of pinna motions.”
Journal of the Acoustical Society of America 141
(5): 3011–17. https://doi.org/10.1121/1.4982042.
21. Feng, L., L. Gao, H. Lu, and R. Muller. 2012.
“Noseleaf Dynamics during Pulse Emission
in Horseshoe Bats.” PLoS One 7 (5): e34685.
https://doi.org/10.1371/journal.pone.0034685.
22. Ahmed, F., M. Waqas, B. Jawed, A. Manzoor
Soomro, S. Kumar, A. Hina, U. Khan, et al. 2022.
“Decade of bio-inspired soft robots: A review.”
Smart Materials and Structures. https://doi.
org/10.1088/1361-665X/ac6e15.
23. Husbands, P., Y. Shim, M. Garvie, A. Dewar,
N. Domcsek, P. Graham, J. Knight, T. Nowotny,
and A. Philippides. 2021. “Recent advances in
evolutionary and bio-inspired adaptive robotics:
Exploiting embodied dynamics.” Applied Intel-
ligence 51 (9): 6467–96. https://doi.org/10.1007/
s10489-021-02275-9.
24. Wang, J., S. Lin, and A. Liu. 2023. “Bioin-
spired perception and navigation of service
robots in indoor environments: a review.”
Biomimetics. https://doi.org/10.3390/
biomimetics8040350.
25. Ha, S. A., and G. Lu. 2020. “A review of
recent research on bio-inspired structures and
materials for energy absorption applications.”
Composites Part B: Engineering. https://doi.
org/10.1016/j.compositesb.2019.107496.
26. Jiang, Z., Y. Ma, and Y. Xiong. October
2023. “Bio-inspired generative design for engi-
neering products: A case study for flapping
wing shape exploration.” Advanced Engineering
Informatics 58:102240. https://doi.org/10.1016/j.
aei.2023.102240.
27. Budholiya, S., A. Bhat, S. A. Raj, M. T.
Hameed Sultan, A. U. Md Shah, and A. A. Basri.
2021. “State of the art review about bio-inspired
design and applications: An aerospace perspec-
tive.” Applied Sciences. https://doi.org/10.3390/
app11115054.
NDT TUTORIAL
|
BIOINSPIREDNDE
32
M AT E R I A L S E V A L U AT I O N A P R I L 2 0 2 5
28. Sterling, E., and E. McCreless. 2006.
“Adaptations in the Aye-aye: A Review.” In
Lemurs. Boston, MA: Springer. https://doi.
org/10.1007/978-0-387-34586-4_8.
29. Perry, G. H., D. Reeves, P. Melsted, A. Ratan,
W. Miller, K. Michelini, E. E. Louis, et al. 2012.
“A genome sequence resource for the aye-aye
(Daubentonia madagascariensis), a nocturnal
lemur from Madagascar.” Genome Biology
and Evolution. 4 (2): 126–135. https://doi.
org/10.1093/gbe/evr132.
30. Kaufman, J. A., E. T. Ahrens, D. H. Laidlaw,
S. Zhang, and J. M. Allman. 2005. “Anatom-
ical analysis of an aye-aye brain (Dauben-
tonia madagascariensis, primates: Prosimii)
combining histology, structural magnetic reso-
nance imaging, and diffusion-tensor imaging.”
Anatomical Record. Part A, Discoveries in Molec-
ular, Cellular, and Evolutionary Biology 287A (1):
1026–37. https://doi.org/10.1002/ar.a.20264.
31. Coleman, M. N., and C. F. Ross. 2004.
“Primate auditory diversity and its influence on
hearing performance.” Anatomical Record. Part
A, Discoveries in Molecular, Cellular, and Evolu-
tionary Biology 281A (1): 1123–37. https://doi.
org/10.1002/ar.a.20118.
32. Ramsier, M. A., and N. J. Dominy. 2012.
“Receiver bias and the acoustic ecology of
aye-ayes (Daubentonia madagascariensis).”
Communicative &Integrative Biology 5 (6):
637–40. https://doi.org/10.4161/cib.21509.
33. Hartstone‐Rose, A., E. Dickinson, M. L.
Boettcher, and A. Herrel. 2020. “A primate with
a Panda’s thumb: The anatomy of the pseudo-
thumb of Daubentonia madagascariensis,” Am
J Phys Anthropol 171. https://doi.org/10.1002/
ajpa.23936.
34. Nemati, H., and E. Dehghan-Niri. January
2023. “Biomimetic investigation of the impact of
the ear canal on the acoustic field sensitivity of
aye-ayes.” Applied Acoustics 202:109171. https://
doi.org/10.1016/j.apacoust.2022.109171.
35. Nemati, H., and E. Dehghan-Niri. 2020.
“The acoustic near-field measurement of
aye-ayes’ biological auditory system utilizing a
biomimetic robotic tap-scanning.” Bioinspira-
tion &Biomimetics 15 (5): 056003. https://doi.
org/10.1088/1748-3190/ab98de.
36. Masurkar, N., J. Kang, H. Nemati, and
E. Dehghan-Niri. December 2023. “Aye-aye
middle finger kinematic modeling and motion
tracking during tap-scanning.” Biomimetic Intel-
ligence and Robotics 3 (4): 100134. https://doi.
org/10.1016/j.birob.2023.100134.
37. Hsu, D. K., J. J. Peters, and D. J. Barnard.
2004. “Development of fieldable systems for
inspecting aircraft composite structures.” In Key
Engineering Materials, 1845–1851. Trans Tech
Publications Ltd. https://doi.org/10.4028/www.
scientific.net/KEM.270-273.1845.
38. Barnard, D. J., J. J. Peters, and D. K. Hsu.
2001. “Development of a magnetic CAM for
the computer aided tap test system.” In AIP
Conference Proceedings, 1966–1971. https://doi.
org/10.1063/1.1373993.
39. Georgeson, G. E., S. Lea, and J. Hansen.
1996. “Electronic tap hammer for composite
damage assessment.” Nondestructive Evaluation
Techniques of Aging Infrastructure and Manu-
facturing, Scottsdale, AZ: 328–38. https://doi.
org/10.1117/12.259107.
40. Oral, I. 2019. “Characterization of damages
in materials by computer-aided tap testing.”
In IOP Conference Series: Materials Science
and Engineering. https://doi.org/10.1088/1757-
899X/707/1/012019.
41. Tishechkin, D. Y. September 2022. “Vibra-
tional communication in insects.” Entomological
Review 102 (6): 737–68. https://doi.org/10.1134/
S001387382206001X.
42. Bignell, D. E., Y. Roisin, and N. Lo, eds.
2011. Biology of Termites: a Modern Synthesis.
Dordrecht: Springer Netherlands. https://doi.
org/10.1007/978-90-481-3977-4.
43. Hager, F. A., K. Krausa, and W. H.
Kirchner. 2019. “Vibrational behavior in
termites (Isoptera).” In Biotremology: Studying
Vibrational Behavior, ed. P. S. M. Hill, R.
Lakes-Harlan, V. Mazzoni, P. M. Narins, M.
Virant-Doberlet, and A. Wessel, 309–327. Cham:
Springer International Publishing. https://doi.
org/10.1007/978-3-030-22293-2_16.
44. Howse, P. E. 1964. “The significance of the
sound produced by the termite Zootermopsis
angusticollis (Hagen).” Animal Behaviour 12
(2–3): 284–300. https://doi.org/10.1016/0003-
3472(64)90015-6.
45. Hager, F. A., and W. H. Kirchner. September
2013. “Vibrational long-distance communica-
tion in the termites macrotermes natalensis
and odontotermes sp.” Journal of Experi-
mental Biology 216 (17): 3249–56. https://doi.
org/10.1242/jeb.086991.
46. Hager, F. A., and W. H. Kirchner. July 2014.
“Directional vibration sensing in the termite
Macrotermes natalensis.” Journal of Experi-
mental Biology 217 (14): 2526–30. https://doi.
org/10.1242/jeb.103184.
47. Röhrig, A., W. H. Kirchner, and R. H.
Leuthold. 1999. “Vibrational alarm communi-
cation in the African fungus-growing termite
genus Macrotermes (Isoptera, Termitidae).”
Insectes Sociaux 46 (1): 71–77. https://doi.
org/10.1007/s000400050115.
48. Delattre, O., J. Šobotník, V. Jandák, J. Synek,
J. Cvacka, ˇ O. Jirícek, ˇ T. Bourguignon, and D.
Sillam-Dussès. May 2019. “Chemical and vibra-
tory signals used in alarm communication in
the termite Reticulitermes flavipes (Rhinotermit-
idae).” Insectes Sociaux 66 (2): 265–72. https://
doi.org/10.1007/s00040-018-00682-9.
49. Evans, T. A., R. Inta, J. C. S. Lai, and M. Lenz.
November 2007. “Foraging vibration signals
attract foragers and identify food size in the
drywood termite, Cryptotermes secundus.”
Insectes Sociaux 54 (4): 374–82. https://doi.
org/10.1007/s00040-007-0958-1.
50. Ke, J., D. D. Laskar, D. Gao, and S. Chen.
2012. “Advanced biorefinery in lower termite-
effect of combined pretreatment during the
chewing process.” Biotechnology for Biofuels 5
(1): 11. https://doi.org/10.1186/1754-6834-5-11.
51. Smeathman, H. 1781. Some account of the
termites, which are found in Africa and other hot
climates. Letter. The Royal Society.
52. Inta, R., J. C. S. Lai, E. W. Fu, and T. A.
Evans. August 2007. “Termites live in a material
world: Exploration of their ability to differentiate
between food sources.” Journal of the Royal
Society, Interface 4 (15): 735–44. https://doi.
org/10.1098/rsif.2007.0223.
53. Auld, B. A. 1973. Acoustic Fields and Waves in
Solids. John Wiley &Sons.
54. Hu, X. 2011. “Biology and reproductive strat-
egies in the subterranean termites (Isoptera:
Rhinotermitidae).” in Recent Advances in Ento-
mological: 213–226. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-17815-3_12.
55. Inta, R., T. A. Evans, J. C. S. Lai, and M.
Lenz. 2007. “What do vibrations have to do with
termites’ food choice?” Acoust Aust. 35: 73–77.
https://www.researchgate.net/publication/
261504371.
56. Evans, T. A., J. C. S. Lai, E. Toledano, L.
McDowall, S. Rakotonarivo, and M. Lenz. 2005.
“Termites assess wood size by using vibration
signals.” Proc. Natl. Acad. Sci. USA. https://doi.
org/10.1073/pnas.0408649102.
57. Cervený, J., S. Begall, P. Koubek, P. Nováková,
and H. Burda. June 2011. “Directional preference
may enhance hunting accuracy in foraging
foxes.” Biology Letters 7 (3): 355–57. https://doi.
org/10.1098/rsbl.2010.1145.
58. Malkemper, E. P. 2014. “The sensory biology
of the red fox hearing, vision, magnetorecep-
tion.” Dissertation. Universität Duisburg-Essen.
59. Dahlgren, S. S., and B. Gjerde. September
2010. “The red fox (Vulpes vulpes) and the
arctic fox (Vulpes lagopus) are definitive
hosts of Sarcocystis alces and Sarcocystis
hjorti from moose (Alces alces).” Parasitology
137 (10): 1547–57. https://doi.org/10.1017/
S0031182010000399.
60. Yan, Y., Y. Shen, X. Cui, and Y. Hu. December
2018. “Localization of multiple leak sources
using acoustic emission sensors based on
MUSIC algorithm and wavelet packet analysis.”
IEEE Sensors Journal 18 (23): 9812–20. https://
doi.org/10.1109/JSEN.2018.2871720.
61. Liu, C., Y. Li, L. Fang, and M. Xu. March 2017.
“Experimental study on a de-noising system for
gas and oil pipelines based on an acoustic leak
detection and location method.” International
Journal of Pressure Vessels and Piping 151:20–34.
https://doi.org/10.1016/j.ijpvp.2017.02.001.
62. Li, J., Y. Li, X. Huang, J. Ren, H. Feng, Y.
Zhang, and X. Yang. April 2021. “High-sensitivity
gas leak detection sensor based on a compact
microphone array.” Measurement 174:109017.
https://doi.org/10.1016/j.measurement
.2021.109017.
A P R I L 2 0 2 5 M AT E R I A L S E V A L U AT I O N 33
Previous Page Next Page